
Applied Intelligence (2025) 55:328
https://doi.org/10.1007/s10489-024-06191-6

STViT+: improving self-supervised multi-camera depth estimation
with spatial-temporal context and adversarial geometry regularization

Zhuo Chen1 · Haimei Zhao2 · Xiaoshuai Hao3 · Bo Yuan4 · Xiu Li1

Accepted: 11 December 2024 / Published online: 16 January 2025
© The Author(s) 2025

Abstract
Multi-camera depth estimation has gained significant attention in autonomous driving due to its importance in perceiving
complex environments. However, extending monocular self-supervised methods to multi-camera setups introduces unique
challenges that existing techniques often fail to address. In this paper, we propose STViT+, a novel Transformer-based frame-
work for self-supervisedmulti-camera depth estimation.Our key contributions include: 1) theSpatial-TemporalTransformer
(STTrans), which integrates local spatial connectivity and global context to capture enriched spatial-temporal cross-view
correlations, resulting in more accurate 3D geometry reconstruction; 2) the Spatial-Temporal Photometric Consistency
Correction (STPCC) strategy that mitigates the impact of varying illumination, ensuring brightness consistency across
frames during photometric loss calculation; 3) the Adversarial Geometry Regularization (AGR) module, which employs
Generative Adversarial Networks to impose spatial constraints by using unpaired depth maps, enhancing performance under
adverse conditions such as rain and nighttime driving. Extensive evaluations on large-scale autonomous driving datasets,
including Nuscenes and DDAD, confirm that STViT+ sets a new benchmark for multi-camera depth estimation.

Keywords Multi-camera perception · Depth estimation · Spatial-temporal transformer · Adversarial geometry regularization

1 Introduction

Depth estimation is the process of determining the distance of
objects in the scene from the camera by assigning depth val-
ues to eachpixel in inputRGB images, thereby reconstructing
the 3D geometric structure of the environment. This task is
essential for perceiving spatial relationships and serves as
a foundation for several critical technologies. In particular,
depth estimation is critical for key applications in fields such
as autonomous driving, robotics, drone navigation, and vir-
tual/augmented reality [1–6]. In the context of autonomous
driving, accurate depth estimation enables vehicles to effec-
tively interpret their surroundings in three dimensions, which
is crucial for safety and navigation. Multi-camera depth
estimation, which leverages multiple camera viewpoints,
plays a pivotal role in these systems, as it provides a more
comprehensive and precise understanding of the environ-
ment compared to monocular methods. By combining the
information from multiple angles, multi-camera setups can
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generate richer spatial data, facilitating enhanced 3D scene
reconstruction. This is particularly valuable for tasks such as
object detection [7, 8], path planning [9], and collision avoid-
ance [10], which require a detailed understanding of both the
vehicle’s immediate surroundings and distant obstacles.

With the advent of the deep learning techniques [11,
12], supervised depth estimation has garnered significant
attention. These approaches typically rely on high-precision
devices such as LiDAR to generate ground truth depth from
3D point clouds, which are subsequently used to super-
vise network training. Depth estimation is often framed as
a regression [13, 14] or classification [15, 16] task and these
methods have exhibited impressive performance, thereby
propelling advancements in 3D perception. However, due
to the difficulty and high cost of obtaining LiDAR devices,
accurate ground truth depth is rarely available in practical
applications, posing challenges to the widespread adoption
of supervised depth estimation methods.

Consequently, a growing body of research has shifted
towards self-supervised depth estimation. These methods
leverage photometric consistency across consecutive frames
as a supervisory signal, allowing for the simultaneous opti-
mization of depth and pose estimation. In a typical pipeline, a
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depth network and a pose network are employed to predict the
corresponding depth maps and pose transformations. These
predictions are used to warp the source frame to adjacent
frames, achieving network optimization by minimizing the
photometric difference between the original images and the
warped images. Notably, these approaches [17–19] utilize
multiple frames during the training phase for loss compu-
tation, and a single monocular image is required during
inference.As such, they are categorized as Single-frameSelf-
supervised Monocular Depth Estimation methods, as shown
in Fig. 1 A.

To leverage the abundant sequential image data effec-
tively, some methods [20–22] propose utilizing multi-frame
images as input during both training and inference stages, as
shown in Fig. 1 B. The inter-frame geometric correlations
are usually exploited by constructing cost volumes or cor-
relation layers. These approaches significantly enhance the
performance of self-supervised depth estimation methods by
harnessing the temporal multi-frame correlations.

In addition to theongoing advancements in self-supervised
monocular depth estimation techniques, recent methods [23–
25] have extended monocular methods to multi-camera con-
figurations to fulfill the perceptual demands of autonomous
driving cars with 360-degree surround-view cameras. These
approaches enhance the monocular framework by enabling
cross-camera feature interaction and fusion, leveraging the
overlap among adjacent cameras to boost the representation
learning, as shown in Fig. 1 C. Furthermore, by taking multi-
camera sequence as input, the overlap of field-of-view (FoV)
not only exists in adjacent cameras but also in adjacent tem-
poral frames. This comprehensive integration of spatial and
temporal data facilitates more robust depth representation
learning, as shown in Fig. 1 D.

While adapting monocular self-supervised methods to the
multi-camera setup has demonstrated promise in previous
methods, several challenges specific to multi-camera setups
remain unaddressed, impeding further performance improve-
ment. Self-supervised depth estimation methods highly rely
on the co-visible regions across different frames to compute
reprojection errors. Additionally, they assume that the cor-
responding pixels of the same 3D point in different images
exhibit identical intensities, an assumption frequently vio-
lated due to factors such as variations in illumination, extreme
weather, and occlusion. For the multi-camera setups in large-
scale autonomous driving datasets collected in real-world
environments, such as NuScenes [26] and DDAD (the Dense
Depth for Autonomous Driving dataset [27]), the challenges
include 1) The overlap between adjacent cameras (e.g., the
front camera w.r.t. the front-left or front-right cameras) is too
small (as low as 10% [25]) to conduct effective image or fea-
ture matching for accurate 3D geometry recovery; 2) Various
challenging condition, such as adverse weather or low-light
scenarios (e.g., driving in rainy days or at night), hinder the
ability to provide accurate photometric supervision, which is
critical for self-supervised depth estimation.

In this paper, we explore the Multi-frame Self-supervised
Multi-camera Depth Estimation paradigm and propose novel
techniques to mitigate these challenges and enhance perfor-
mance. First, we propose a Spatial-Temporal Transformer
that effectively captures both local connectivity and the
global context from image features, while learning enriched
spatial-temporal cross-view correlations for improved 3D
geometry reconstruction. As shown in Fig. 2, our approach
leverages not only cross-camera correlations within the same
frame (yellow arrows) and cross-frame correlations of the
same camera (views with the corresponding same color)

A Single -frame Self-supervised Monocular Depth Estimation

B Multi -frame Self-supervised Monocular Depth Estimation

C Self -supervised Multi-camera Depth Estimation

D Multi -frame Self-supervised Multi-camera Depth Estimation

Input image Encoder Decoder Estimated Depth Depth Feature Information Flow
Spatial Cross Attention 

Connection

Temporal Cross Attention 

Connection

Fig. 1 Comparison of self-supervised depth estimation pipelines under
different settings (A): Single-frame Self-supervised Monocular Depth
Estimation; (B): Multi-frame Self-supervised Monocular Depth Esti-
mation; (C): Self-supervised Multi-camera Depth Estimation; (D):

Multi-frame Self-supervisedMulti-camera Depth Estimation). For sim-
plicity, only depth networks are illustrated and the corresponding pose
networks are omitted
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Fig. 2 Illustration of simultaneous cross-camera and cross-frame cor-
relations

but also cross-camera and cross-frame correlations (different
cameras in different frames, shown as colorful arrows across
different temporal views). This strategy maximizes the use
of co-visible overlap among images, enhancing both feature
matching and network training. However, varying illumina-
tion and brightness across cameras and frames during driving
can negatively impact both image correlation acquisition
and projection error calculation in the self-supervised learn-
ing process. To mitigate this, we employ a spatial-temporal
photometric consistency correction strategy to adjust image
intensities andmaintain brightness consistency.Additionally,
we introduce aGenerativeAdversarialNetwork-basedgeom-
etry regularizationmodule to address prediction anomalies in
challenging conditions such as rainy and nighttime scenarios.
This paper builds upon and significantly expands the prelim-
inary ideas and concepts initially presented in our previous
two-page conference abstract [28].

In summary, the main contributions of this paper are four-
fold:

• We tackle the challenging task of self-supervised multi-
camera depth estimation by introducing STViT+, a novel
Transformer-based framework.

• Wedevelop the Spatial-Temporal Transformer (STTrans)
for comprehensive feature extraction, capturing both
cross-camera and cross-frame geometric correlations.
Together with the Spatial-Temporal Photometric Con-
sistency Correction (STPCC), our method effectively
leverages the spatial-temporal context to enhance depth
and pose learning.

• We propose the Adversarial Geometry Regularization
(AGR) module, which imposes spatial positional con-
straints on predicted depth maps, mitigating prediction
anomalies in challenging cases such as rainy and night-
time conditions.

• We conduct comprehensive evaluations and ablation
studies, demonstrating the effectiveness of our method.

STViT+ achieves state-of-the-art results on two large-
scale self-supervised multi-camera depth estimation
benchmarks: NuScenes [26] and DDAD [27].

2 Related work

2.1 Monocular single-frame self-supervised depth
estimation

Research into self-supervised depth estimation initially
beganwithmonocular settings, wherein researchers employed
monocular image sequences as training data and estimated
depth maps for individual monocular frames during infer-
ence. SfMLearner [17] is one of the first attempts to explore
monocular depth estimation in a self-supervised manner. It
exploits predicted depth and pose to warp source images
to reconstruct its adjacent images thereby formulating the
learning as a projection error minimization process. Many
subsequent works further improve this paradigm by addition-
ally introducing 3D constraint [29], imposing feature-level
consistency [30], integrating uncertainty learning [31, 32]
and incorporating related tasks [33, 34], e.g., optical flow
estimation [35–37] and semantic segmentation [38, 39].
Monodepth2 [18] proposes several schemes to improve the
effectiveness of photometric loss, including a minimum
reprojection loss and an auto-masking strategy, yieldingmore
accurate results. Recently, many works ( DIFFNet [36],
MonoFormer [40], MonoViT [19] and SRD [41]) explore
stronger network architectures to enhance the representa-
tion learning ability including PackNet [27], HRNet [42]
and Vision Transformer [43], further improves the predic-
tion accuracy. Besides, there is a line of work devoted to
addressing illumination issues in adverse conditions such as
nighttime driving scenarios [44–46]. Some methods [44, 45]
utilize domain adaptation techniques to adapt the daytime
training estimation network to be applicable for the night-
time scenes. STEPS [46] proposes to jointly learn a nighttime
image enhancer and a depth estimator to overcome the low
illumination problems in the depth estimation task, but addi-
tional illumination estimation and calibration networks are
imposed, increasing computation burdens.

2.2 Monocular multi-frame self-supervised depth
estimation

Given the availability of image sequences as training data,
researchers then embarked on investigating how to lever-
age temporal information to further enhance the efficacy of
monocular depth estimation. TC-Depth [47] fused the multi-
frame features with proposed spatial and temporal attention
modules to create a multi-frame depth estimation network,
which improves the temporal depth stability and accuracy
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by combining modules with photometric cycle consistency.
Inspired by multi-frame stereo methods [48, 49], Many-
Depth [20] is introduced as an innovative self-supervised
multi-frame depth estimation model that capitalizes on the
synergies between monocular and multi-view depth estima-
tion, incorporating multiple frames during the testing phase.
DepthFormer [21] proposed a novel end-to-end transformer,
which generates cost volume through multi-view feature
matching via cross- and self-attention with depth-discretized
epipolar sampling. IterDepth [50] further improves themulti-
frame monocular depth estimation approach with the pro-
posed iterative residual refinement network, incorporating a
gated recurrent depth fusion unit to enable iterative feature
fusion and inverse depth prediction. DS-Depth [51] presents
a dynamic cost volume leveraging residual optical flow to
improve occlusion handling, further enhanced by a fusion
module. Additionally, pyramid distillation and adaptive pho-
tometric error losses are proposed for accuracy improvement.

2.3 Multi-camera self-supervised depth estimation

Multi-camera depth estimation is a long-standing topic,
which is usually solved by multi-view stereo, i.e., recon-
structing 3D information of the scene from pictures of
different angles. Multi-view stereo usually needs a large
overlap to conduct image matching and cost volume con-
struction, which is not suitable for driving scenes. FSM
[23] extends self-supervised monocular depth estimation to
the surrounding multi-camera setting to meet the increasing
demand in autonomous driving scenarios. FSM focuses on
enhancing the self-supervision signal by leveraging spatial
and temporal contexts to enrich the photometric consistency
supervision and imposing pose consistency constraints to

learn robust pose estimation. SurroundDepth [24] utilizes a
shared encoder to extract high-level feature maps for each
view with a cross-view transformer to fuse features and
capture cross-view interactions. MCDP [25] formulate the
depth estimation as a weighted combination of depth basis
to iteratively update and propagate to maintain a consistent
structure of depth predictions. EGA-Depth [52] simplifies
the cross-attention mechanism employed in SurroundDepth
by limiting cross-attention to adjacent cameras for each indi-
vidual camera. This refinement enables cross-attention to be
conducted on higher-resolution features, further improving
the accuracy (Fig. 3).

2.4 Self-supervised depth estimation
with generative adversarial networks

Generative Adversarial Networks (GANs) [53] have gar-
nered significant attention in various vision tasks, including
style transfer [54, 55], image-to-image translation [56, 57],
image editing [58–60], and cross-domain image genera-
tion [61, 62]. Since our proposed Geometry Regularization
Module is based on a GAN, we give a brief review of pre-
vious works on self-supervised depth estimation with GAN.
One line of research [63–65] utilizes GANs as a robust loss
item to differentiate between warped images and original
images within the self-supervised depth estimation pipeline.
Some other approaches [66–68] leverage the image-to-image
translation ability of GANs to enhance input image quality
or transfer synthetic and realistic images, utilizing additional
synthetic datasets [69] for domain adaptation. Wu et al. [70]
and Wang et al. [71] also designed a GAN-based module for
regularization and refinement. However, the former is dedi-
cated to distinguishing the ground-truth depth map and the

Fig. 3 Overview of our STViT+ framework. Our STViT+ is composed
of aDepthNetwork, a PoseNetwork, and anAdversarialGeometryReg-
ularization Module. The Depth Network consists of a Spatial-Temporal
Transformer Encoder and aDepthDecoder. The PoseNetwork is imple-
mented by a lightweight ResNet. TheDepthNetwork and PoseNetwork

are jointly optimized via the minimization of Spatial-Temporal Photo-
metric Loss. After predicted depth maps are obtained, they are further
regularized and refined in the Adversarial Geometry Regularization
Module
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predicted depth map while the latter seeks to constrain the
incorrect depth estimations during nighttime using daytime
prediction in an adversarial manner. In contrast, our work
diverges from these studies in two key aspects: 1) we utilize
arbitrary depthmaps fromother scenes to regularize the depth
maps of the corresponding camera without relying on spe-
cific ground truth or predictions under varying illumination
conditions, and 2) we design a novel depth-aware positional
embedding that, along with predicted depth maps, serves as
the input for the discriminator instead of the corresponding
RGB frames or coordinates.

3 Method

3.1 Network architecture of STViT+

3.1.1 Motivation

In self-supervised depth estimation algorithms, explicit
ground truth information is absent, and supervisory sig-
nal relies solely on photometric consistency across different
viewpoints. In a multi-camera setup with six cameras cap-
turing temporal sequences, a wealth of data is available for
both training and inference. Consequently, depth estima-
tion networks must effectively extract both local and global
features from the input images. This process involves com-
prehensive feature extraction from individual frames, as well
as the acquisition of geometric features across temporally
sequential frames and co-observable regions among different
camera viewpoints. Previous multi-camera self-supervised
depth estimation methods typically employed Convolutional
Neural Networks (CNNs) to extract features from input
images and subsequently performed cross-attention opera-
tions between these features. However, the localized nature
of convolution operations often limits CNNs in capturing
long-range context similarity and dependencies effectively.
Due to the localized nature of the extracted features, which
tend to excessively focus on individual objects or semantic
categories, subsequent attempts to capture inter-frame corre-
lations through subsequent cross-attention mechanisms have
been rendered ineffective. This has hindered the accurate
recovery of the geometric information for the entire scene
[19]. Therefore, to enhance the extraction of both global
and local geometric features and leverage correlations across
different viewpoints and sequential frames, we introduce
the Spatial-Temporal Transformer Framework, referred to
as STViT+, which is specifically designed for multi-camera
self-supervised depth estimation. It follows the typical self-
supervised depth estimation structure, consisting of a Depth
Network and a Pose Network. The Depth Network integrates
a Spatial-Temporal Transformer and a Decoder.

3.1.2 Depth network

Similar to prior works, our Depth Network is designed fol-
lowing the encoder-decoder architecture.Wewill explain the
details of Depth Network in the following sections.

Spatial-Temporal Transformer (STTrans) Previous stud-
ies [19, 27] have highlighted the importance of extracting
effective features to improve the performance of depth esti-
mation. Therefore, we enhance the encoder architecture for
multi-camera self-supervised depth estimation by employing
powerful vision transformer models. We propose a Spatial-
Temporal Transformer to not only leverage the transformer’s
ability to model long-range dependencies, overcoming the
locality issue in feature extraction seen in previousworks [18,
24], but also introduce Spatial-Temporal Cross-Correlation
to fully exploit the co-visibility regions across cameras and
temporal frames for geometric structure recovery. Inspired by
recent transformer models such as MPViT [72] which intro-
duces the concept of a Multi-Path Transformer Block, we
devise a Depth Encoder to capture both local and global con-
text within images and further exploit the spatial-temporal
cross correlations.

As shown in Fig. 4, our Depth Encoder consists of
Conv-Stem and Spatial-Temporal Transformer Layers. Each
Transformer layer contains Multi-Scale Patch Embedding,
Transformer Blocks, a Convolutional Block, a Global-to-
Local Feature Interaction, and a Spatial-Temporal Cross
Correlation Module. The input multi-camera sequence is
fed to a Conv-Stem and then Spatial-Temporal Transformer
Layers to obtain the depth feature. The Spatial-Temporal
Transformer layer first embeds the extracted features into
different-sized visual tokens in Multi-Scale Patch Embed-
ding which is formed by several parallel convolutional patch
embedding layers with different kernel sizes, to exploit both
fine- and coarse-grained visual tokens at the same feature
level followingMPViT [72]. After that, parallel Transformer
Blocks and Convolutional Block are leveraged to further pro-
cess the embedded tokens. As shown in Fig. 4, there are three
Transformer Blocks to capture the long-range dependencies
and global context. EachBlock containsM TransformerLay-
ers, which consists of a Layer Normalization (LayerNorm)
module, a Factorized Multi-head Self Attention (MHSA)
layer [72], another Layer Normalization, and a Feed-forward
Network (FFN). Parallel to the Transformer Blocks, a Con-
volutional Block is used to exploit local connectivity from
translation invariance. The Convolutional Block comprises a
sequence of 1×1, 3×3 depth-wise, and 1×1 convolutions.
By combining the advantages of Transformer Blocks and
Convolutional Blocks, the modeled feature can capture both
local connectivity and global context simultaneously. A sub-
sequent Global-to-Local Feature Interaction is further used
to enhance the local and global feature interactions to obtain
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Fig. 4 The architecture of Depth Encoder. It is composed of Conv-
Stem and Spatial-Temporal Transformer Layers. Each Transformer
layer contains Multi-Scale Patch Embedding, Transformer Blocks, a

Convolutional Block, a Global-to-Local Feature Interaction, and a
Spatial-TemporalCrossCorrelationModule. The structure of eachmod-
ule is illustrated in blue blocks

enriched representations. We use Encdepth to represent the
feature extraction part of the model:

F = Encdepth([It , ..., It+m]), (1)

where It represents the surrounding six images at times-
tamp t and m ∈ {−1, 0, 1} means we take three temporal
frames as input in our default setting. Although we can effec-
tively acquire the image feature, the cross-view correlation
among different cameras and different temporal frames is
still not exploited. Thus, we introduce a Spatial-Temporal
Cross Correlation module to facilitate correlation learning
and geometry recovery.

Spatial-Temporal Cross Correlation As shown in Fig. 4,
the interacted features are first split into different cameras
and different temporal frames, e.g. Fi

t denoting the feature
of the i th camera in timestamps t . For each feature Fi

t , we
pre-define the list of views that share overlap regions with
feature Fi

t . The overlapped views contain adjacent cameras
at the same timestamp, adjacent temporal frames of the same
camera, and simultaneously cross-camera and cross-frame
views as well, as shown in Fig. 2. Thus, Spatial-Temporal
Cross Correlation is able to learn enriched spatial-temporal
cross-view correlations. Specifically, feature Fi

t is leveraged
to compute queries, and the features of overlapped views
Gx

t+m are used to obtain keys and values:

Qi
t = Fi

t Wq
i
t , Ki

t = Gx
t+mWk

i
t , V i

t = Gx
t+mWv

i
t . (2)

Here, x ∈ [1, N ] and N is the number of cameras. Wq
i
t ,

Wk
i
t , and Wv

i
t are the learnable projections for query, key,

and value. Thus, the feature after cross correlation is:

F̂ i
t = so f tmax(

Qi
t K

i
t√

d
)V i

t , (3)

where d denotes the embedding dimension. By interacting
with features of both cross-camera and cross-frame views,
features F̂ i

t can learn enriched cross-view context and cor-
respondence, which is beneficial to accurately inferring 3D
geometry.

Depth decoder Utilizing multi-scale features obtained from
the depth encoder, our depth decoder incorporates cross-layer
and cross-scale connections following [19]. Recognizing the
contextual distinctions among features at various scales, such
as the preference for higher-resolution features for fine-
grained details, we bolster cross-scale feature integration.
To achieve this, we employ both spatial and channel atten-
tion mechanisms. Ultimately, the disparity (inverse depth)
predictionsD under different resolutions are handled by four
heads comprising two convolutional layers and a Sigmoid
activation function. The prediction of depth maps can be for-
mulated as:

Di
t = Decdepth(F̂

i
t ), (4)

where Decdepth is the decoder of depth network, i denotes
the ith camera and t denotes the tth frame.

3.1.3 Pose network

Following the common practice of self-supervised depth esti-
mation, we adopt a lightweight ResNet18 [12] as the encoder
Encpose of Pose Network and subsequent convolution layers
as the decoder Decpose to regress the 6 DoF relative poses P
between adjacent temporal frames. Specifically, we first take
N pairs of adjacent frames as the input and output a univer-
sal pose Pt+m→t for all N cameras [24]. Then, the predicted
universal pose Ps→t is transformed to each specific camera
with its known camera extrinsic matrix. The whole process

123



STViT+: Improving Self-supervised Multi-Camera Depth Estimation... Page 7 of 20 328

of predicting pose can be formulated as:

hi = Encpose([I it , I it+m]),

Pt+m→t = Decpose(
1

N

N∑

i=1

hi ),

Pi
t+m→t = (T i )−1Pt+m→t T

i ,

(5)

where Pi
t+m→t is the learned pose for the i th camera and

T i is its corresponding extrinsic matrix. The universal pose
predictionmanner cannaturally ensure geometry consistency
among cameras.

3.2 Self-supervised training

The self-supervised depth estimation problem is formulated
to a projection error minimization process, where the depth
network and pose network are jointly optimized. Given the
input images, depth mapsD and relative pose transformation
P are predicted with depth network and pose network. Then
the depth map and pose are utilized to reproject the source
image to reconstruct the target image. The networks are opti-
mized by minimizing the difference between the synthesized
target image and the original target image.

3.2.1 Spatial-temporal photometric loss

The target image can be each frame e.g., I it denoting the
image captured by the i th camera at the timestamp t . To
fully exploit the spatial-temporal consistency, the source
images include not only the spatial neighborhood, the tempo-
ral neighborhood and also the cross-frame and cross-camera
views with overlapped regions. Similar to the Spatial-
Temporal CrossCorrelation part, we pre-define a list of views
that can be observed co-visible regions with the target image,
e.g., the length of the i th correlation image list is C I . Thus,
the photometric loss �p can be formulated as:

�p =
N∑

i=1

C I∑

ci=1

�ph(I
i
t , I

ci
s→t ). (6)

The reconstructed target image I cis→t is obtained via repro-
jection with the predicted depth map Di

t and pose Pci
t→s :

I cis→t = Proj(K , Pci
t→s, D

i
t , K

−1, I it ), (7)

where K is the camera intrinsic matrix. The typical photo-
metric loss in prior works comprises an SSIM [73] metric
and L1 Loss term:

�ph(I
i
t , I

ci
s→t )=α

1−SSI M(I it , I
ci
s→t )

2
+(1−α)||I it −I cis→t ||.

(8)

Moreover, an edge-aware smoothing term is often incor-
porated to add a regularization on depth maps in many
previous works [18, 74]:

�sm = |∂xμDt |e−|∂x It | + |∂yμDt |e−|∂y It |, (9)

where μDt is the inverse depth normalized by mean depth.
∂xμDt and ∂xμDt denote the disparity gradient among two
directions.

3.2.2 Spatial-temporal photometric consistency correction
(STPCC)

The photometric loss is designed based on the assump-
tion that the same 3D points have the same intensity in
diverse projected views. However, in practical outdoor driv-
ing scenarios, the illumination among different cameras
and different timestamps can vary severely, which impedes
network learning. Therefore, we propose Spatial-Temporal
Photometric Consistency Correction (STPCC) to enforce the
brightness consistency of diverse views before the calcula-
tion of photometric loss.

Inspired by Contrast Limited Histogram Equalization
(CLHE) [75], we leverage a common mapping functionψ to
correct image brightness and make the image color spatially
and temporally consistent. We first compute the histograms
H of input images, which are the frequency distributions of
L intensity levels (usually L ∈ {0, 1, ..., 255}) of images.
The histograms of spatially and temporally adjacent images,
(taking temporal images as examples, Ht−1, Ht , Ht+1),
are then processed by a normalization operation, H =
avg(Ht−1, Ht , Ht+1). Based on the normalized frequency
distribution, by setting a thresholdω, we assume that if a cer-
tain intensity level in the histogram exceeds the threshold, it
will be clipped, and the portions exceeding the threshold will
be evenly distributed among the various intensity levels, as
shown in Fig. 5. After adjusting the Histograms consistently,
the mapped figure (taking I ′

t as an example) can be obtained:

Īt = ψ(H(It )) = CDF(H(It )) − CDFmin

CDFmax − CDFmin
× (|L|), (10)

Fig. 5 Illustration of the step of histogram adjusting in Spatial-
Temporal Photometric Consistency Correction
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where CDF represents the Cumulative Distribution Func-
tion.CDFmax andCDFmin are the correspondingmaximum
and minimum values of CDF .

In this way, the intensities distribution of spatially and
temporally adjacent images can be aligned consistently.
Moreover, the brightness of images in adverse illustration
conditions i.e., night or dark driving scenarios can be adjusted
with higher visibility. The color correction effect is illustrated
in Fig. 6. The top two rows show the correction effect of three
temporally adjacent images, which makes the brightness
more consistent. The bottom two rows show the correction
effect of spatially adjacent images in nighttime scenarios,
which adjusts and improves the visibility. Note that STPCC
is only applied to images before the photometric loss compu-
tation rather than the input for network learning. Therefore,
the final photometric loss is:

�p =
N∑

i=1

C I∑

ci=1

�ph( Ī
i
t , Ī

ci
s→t ). (11)

3.3 Adversarial geometry regularizationmodule
(AGR)

In real-world outdoor driving scenarios, adverse conditions
such as rainy weather and nighttime driving are frequently
encountered. Under such extreme circumstances, the effec-
tiveness of photometric loss diminishes, thereby significantly
affecting the performance of depth estimation. Therefore, we
propose a GAN-based Adversarial Geometry Regularization

Module (AGR) to further constrain the depth estimation,
as shown in the right part of Fig. 3. Specifically, we con-
sider the Depth Network as a generator to provide depth map
predictions. And adopt the depth predictions of an arbitrary
normal-condition frame as a reference to regularize the depth
distribution. It is observed the depth value distribution has a
close relationship with the pixel positions [76]. Thus, we use
the positional query to scan over the depth map which serves
as key and value. So that we can obtain the depth-aware posi-
tional embedding eit by calculating the dot product similarity
between the query and keys. In this way, the depth-aware
positional embedding can provide soft geometric correspon-
dence between query positions and depth maps. After that,
the positional embedding is concatenated with the normal-
ized predicted depthmaps, denoted as [eit , μ(Di

t )]. Similarly,
the arbitrary depth maps are also concatenated with the cor-
responding positional embedding, denoted as [ei Rt , μ(DiR

t )].
We use the PatchGAN [56] discriminator�Dis to distinguish
[eit , μ(Di

t )] and [ei Rt , μ(DiR
t )], while the depth network tries

to make the prediction [eit , μ(Di
t )] indistinguishable with

the regularization reference [ei Rt , μ(DiR
t )]. The PatchGAN

network consists of 5 layers, which progressively extract
features from the input image. Each convolutional layer is
followed by a LeakyReLU activation function, introducing
non-linearity to the network. Batch normalization layers are
inserted after every other convolutional layer to stabilize and
speed up training. The final layer of the network is a sep-
arate convolutional layer and the output patch size is 1/8
times the original depth predictions. Overall, the network

Fig. 6 Qualitative comparison
of images before and after
Spatial-temporal Photometric
Consistency Correction. The top
two rows illustrate the
correction effect on three
temporally adjacent images. The
bottom two rows demonstrate
the correction effect on spatially
adjacent images captured in
nighttime conditions. For
optimal details, viewing with
zoom-in is recommended
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gradually reduces the spatial dimensions of the input while
increasing the number of feature channels, culminating in
a classification output with two units corresponding to the
desired classes.

The optimization objective for AGR can be formulated as:

LDis =1

2
EDiR

t
[(�Dis([ei Rt , μ(DiR

t )]) − 1)2]

+ 1

2
EDi

t
[�Dis([eit , μ(Di

t )])2],

LGen =1

2
EDi

t
[(�Dis([eit , μ(Di

t )]) − 1)2],
L AGR =min

Gen
max
Dis

LDis + LGen .

(12)

The AGRmodule acts as a discriminator, applying spatial
constraints to the depth estimation network (the generator)
during training. The discriminator loss minimizes prediction
errors by discouraging outliers caused by these challeng-
ing scenarios, thereby refining the spatial consistency of
depth estimation. During inference, AGR is bypassed to
prevent additional computational overhead, maintaining the
model’s efficiency. Our ablation studies confirm that AGR
significantly improves depth accuracy, especially in difficult
environments, without affecting inference performance.

3.4 Training loss

To sum up, the final training loss consists of the photomet-
ric loss �p (11), the smoothing loss �sm (9) and the AGR
regularization loss �AGR (12):

Loss = �p + 10−3�sm + 5 × 10−4�AGR . (13)

Here, the lossweights of the photometric loss and the smooth-
ing loss are kept the same as the monocular depth estimation
methods [18, 74] while the parameter of the AGR regular-
ization loss is obtained by empirical experiments.

4 Experiment

4.1 Datasets

Following the common practice in previous multi-camera
depth estimation methods, we adopted NuScenes [26] and
DDAD [27] to evaluate our method. These two recently
released autonomous driving datasets are both with six
surrounded cameras and relatively small overlaps among
cameras, which are more challenging than the prior monoc-
ular datasets.

NuScenes The NuScenes dataset [26] encapsulates urban
driving contexts and is characterized by a coordinated

assemblage of imagery acquired from a sextuple-camera
configuration. This compilation encompasses 1,000 distinct
scenes and boasts an extensive repository of 1.4 million
images. Renowned for its role as a benchmark for diverse
tasks encompassing 2D and 3D object detection, alongside
semantic and instance segmentation, this dataset assumes a
pivotal position in the domain. Particularly pertinent to the
self-supervised depth estimation task, the NuScenes dataset
poses inherent challenges attributed to the relatively modest
image resolution, constrained spatial inter-camera overlap,
variegated weather conditions, diurnal temporal variations,
and complex, unstructured settings. The raw image dimen-
sions are specified as 1600 × 900, subsequently downscaled
to a resolution of 640×352.Captured at a frequencyof 30Hz,
dataset samples are annotated at a reduced 2Hz cadence,
dictated by keyframes. The temporal interval between these
key frames is appreciably large, precluding the training of
deep networks through conventional self-supervision tech-
niques. Consequently, annotated Sweep data emerge as a
viable recourse, furnishing pivotal supervisory signals in the
training process.

DDAD The Dense Depth for Automated Driving (DDAD)
dataset [27] encompasses urban driving scenarios and has
been meticulously recorded through six synchronized cam-
eras, displaying limited spatial overlap. It is distinguished
by its provision of highly precise dense ground-truth depth
maps for evaluative purposes, extending up to an impres-
sive maximum depth range of 250 meters. This dataset
comprises a training subset encompassing 12,650 instances
(comprising 63,250 images) and a validation subset con-
taining 3,950 instances (consisting of 15,800 images). In
the training set, the utilization of ground-truth depth maps
is eschewed. Notably, the image resolution is denoted as
1,936 × 1,216, following which, in consonance with the
methodology delineated in [16], input images undergo a
downsampling procedure to achieve a resolution of 640 ×
384. Subsequently, during the evaluation phase, image reso-
lution is restored to its original dimensions through bilinear
interpolation.

4.2 Evaluationmetrics

The evaluationmetrics formulti-camera depth estimation are
the same as its monocular counterpart. Four error metrics:
Abs Rel for Absolute Relative Error, Sq Rel for Square Rel-
ative Error, RMSE for Root Mean Square Error, RMSE log
for Root Mean Square Logarithmic Error and three accuracy
metrics are included:

• Abs Rel = (1/n)
∑

i∈n((|di − d∗
i |)/di ),

• Sq Rel = (1/n)
∑

i∈n((||di − d∗
i ||2)/di ),

• RMSE = ((1/n)
∑

i∈n ||di − d∗
i ||2)1/2,
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• RMSE log = ((1/n)
∑

i∈n ||log(di ) − log(d∗
i )||2)1/2

• Accuracy: % of di s.t. max((di/d∗
i ), (d∗

i /di )) = δ < δn ,

where n is the total number of pixels in the ground truth depth
map, di and d∗

i represent the predicted and ground truth depth
value of pixel i . δn denotes a threshold, which is usually set
to 1.251, 1.252 and 1.253 (Fig. 7).

4.3 Implementation details

We implement our STViT+ in Pytorch. The model is trained
for 5 epochs on the NuScenes dataset [26] and 20 epochs on
the DDAD dataset [27] using AdamW as the optimizer and a
batch size set to 6. The initial learning rate for PoseNet and
depth decoder is 10−4, while the Transformer-based depth
encoder is trained with an initial learning rate of 5 × 10−5.
Both the pose encoder and depth encoder are pre-trained on
ImageNet [43]. We use 4 A100 GPUs for the experiments
on Nuscenes and 8 GPUs for experiments on DDAD. In our
experiments, we adopt the same data augmentation detailed
in [18, 19]. For our default setting, we use 3 temporal frames
as input and we also test the version with a single temporal
input.

4.4 Comparison with the state-of-the-arts

We conduct extensive quantitative evaluations on two large-
scale autonomous driving datasets, i.e., Nuscenes [26] and
DDAD [27] datasets. Our method is compared with two
approaches adapted from monocular depth estimation meth-
ods [18, 27] and four state-of-the-art multi-camera-based
methods [23–25, 52]. The detailed evaluation results are
presented in Tables 1 and 2. In comparison with recent state-
of-the-art methods [24, 25, 52], our approach demonstrates
superior performance acrossmost evaluationmetrics, achiev-
ing the best results in five out of seven metrics on Nuscenes
and four out of seven on DDAD. Our method leverages
multiple temporal sequences input in the Spatial-Temporal
Transformer, and for completeness, we also showcase its per-
formance with a single temporal input (six camera figures at
the same timestamp). Despite a slight performance degrada-
tion without temporal input and modeling, our single-input

version still delivers promising results compared to other
advanced methods (Tables 1 and 2).

4.5 Ablation study

4.5.1 Performance of individual cameras

To provide a comprehensive understanding of inference per-
formance, we present an extensive presentation of evaluation
results concerning the six individual cameras in both the
Nuscenes and DDAD datasets, detailed in Tables 3 and 4,
respectively. The experiment reveals that self-supervised
depth estimation performs exceptionally well on front views
compared to backviews. Furthermore, the inference results in
the left view significantly outperform their right counterpart.
This divergence might be attributed to the inherent dissimi-
larities in scenes captured on opposing sides, signifying the
sensitivity of the model to the specific spatial characteris-
tics within its field of vision. This detailed examination and
analysis may shed light on the intricacies of its responses to
diverse perspectives, contributing valuable insights for future
refinement in model designation and learning strategies.

4.5.2 Ablation study for proposed contributions

To demonstrate the effectiveness of each component of
our methods, we conduct thorough ablation studies on
both the Nuscenes and DDAD datasets, with detailed find-
ings presented in Table 5. Utilizing SurroundDepth as
our baseline, we systematically introduce and evaluate
each augmentation, including the Spatial-Temporal Trans-
former (STTrans), Spatial-Temporal Photometric Consis-
tency Correction (STPCC), and the Adversarial Geometry
Regularization module (AGR). The performance trends
observed across the datasets exhibit consistent variations.
The Spatial-Temporal Transformer notably enhances depth
estimation outcomes, leveraging improved feature extraction
and spatial-temporal cross-view feature interaction. STPCC,
augmenting the photometric loss calculation through adjust-
ments in the alignment of multiple spatial-temporal input
images, brings further enhancements, as evidenced in Table 5.
Moreover, theAdversarialGeometryRegularizationmodule,
denoted as AGR, significantly reduces prediction errors, val-

Fig. 7 Example scenes display for two datasets Nuscenes [26] and DDAD [27]
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Table 3 Quantitative evaluation of corresponding six cameras of self-supervised multi-camera depth estimation on Nuscenes [26]

Cameras Resolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Front 352 × 640 0.153 1.845 7.108 0.245 0.803 0.928 0.968

Front-Left 352 × 640 0.231 2.186 6.322 0.313 0.710 0.868 0.931

Back-Left 352 × 640 0.231 2.233 5.825 0.312 0.727 0.869 0.930

Back 352 × 640 0.193 2.277 7.286 0.292 0.741 0.901 0.954

Back-Right 352 × 640 0.304 4.372 6.569 0.358 0.676 0.846 0.918

Front-Right 352 × 640 0.286 3.980 6.974 0.352 0.688 0.858 0.922

All 352 × 640 0.233 2.815 6.681 0.312 0.724 0.878 0.937

Table 4 Quantitative evaluation results of corresponding six cameras of self-supervised multi-camera depth estimation on DDAD [27]

Cameras Resolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Front 384 × 640 0.130 2.699 13.219 0.216 0.845 0.945 0.977

Front-Left 384 × 640 0.186 2.745 11.845 0.294 0.745 0.898 0.948

Back-Left 384 × 640 0.199 2.885 11.419 0.301 0.729 0.891 0.944

Back 384 × 640 0.188 3.062 14.027 0.292 0.717 0.900 0.956

Back-Right 384 × 640 0.224 3.021 10.874 0.331 0.683 0.866 0.935

Front-Right 384 × 640 0.224 3.377 11.552 0.327 0.684 0.867 0.934

All 384 × 640 0.192 2.965 12.156 0.293 0.734 0.895 0.949

Table 5 Ablation study on Nuscenes [26] and DDAD [27]

Methods Ablation study on Nuscenes Ablation study on DDAD
Abs Rel Sq Rel RMSE RMSE log Abs Rel Sq Rel RMSE RMSE log

Baseline 0.245 3.067 6.835 0.321 0.200 3.392 12.270 0.301

+ STTrans 0.238 2.889 6.732 0.316 0.195 3.126 12.204 0.297

+ STTrans + STPCC 0.236 2.864 6.709 0.315 0.194 3.103 12.189 0.295

+ STTrans + STPCC + AGR 0.233 2.815 6.681 0.312 0.192 2.965 12.156 0.293

STTrans denotes the Spatial-Temporal Transformer framework and AGR represents our Adversarial Geometry Regularization module

Fig. 8 Qualitative ablation of AGR. Regions with large differences are highlighted with green boxes. The visualization comparison can demonstrate
the effectiveness of AGR in constraining prediction weirdness in low-illumination and nighttime driving scenarios
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Table 6 Ablation study of Spatial-Temporal Transformer (STTrans) on
Nuscenes [26]

Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
CNN Path only 0.256 3.418 8.675 0.301

Trans. Path only 0.248 3.272 8.016 0.398

1 Trans. Path 0.246 3.165 7.693 0.346

2 Trans. Path 0.243 3.134 7.238 0.325

STTrans 0.233 2.815 6.681 0.312

CNN Path and Trans. Path denotes the Convolutional Block and Trans-
former Block, respectively

idating its efficacy. To offer a more vivid illustration of the
impact ofAGR,we conduct a qualitative ablation by visualiz-
ing predicted depthmaps both with and without the inclusion
of AGR in the model, as depicted in Fig. 8. The comparison
showcases that the model without AGR tends to generate
artifacts in challenging conditions such as low-illumination
regions. In contrast, our complete model incorporating AGR
effectively mitigates these issues, underscoring the crucial
role of AGR in enhancing the robustness of the model, espe-
cially in adverse conditions.

4.5.3 Ablation study for spatial-temporal transformer
(STTrans)

Ablation study of structure The ablation study conducted
on the Spatial-Temporal Transformer (STTrans) structure,
detailed in Table 7, provides insights into the critical com-
ponents influencing its performance. The variants explored
include modifications to the structure components as illus-
trated in Fig. 4, including Convolutional Block (CNN Path),
Transformer Block (Trans. Path), adjustments in the number
of Transformer Block Paths, and alterations in the structure
of the Spatial-Temporal Cross-Correlation (STCC). Exam-
ining Table 6, it is evident that both the Convolutional Block
and Transformer Block significantly contribute to the feature
extraction process.

Ablation study of spatial-temporal cross correlation In
Table 7, specific analyses involve the removal of the full

Table 7 Ablation study of Spatial-Temporal Transformer (STTrans) on
Nuscenes [26]

Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
w/o STCC 0.242 2.986 6.985 0.321

w/o SCC 0.238 2.956 6.893 0.318

w/o TCC 0.235 2.934 6.736 0.315

STTrans 0.233 2.815 6.681 0.312

SCC and TCC denote the spatial cross-correlation and temporal cross-
correlation, respectively

Fig. 9 Illustration of spatial overlap regions (red lines) and the applied
masks (blue block)

STCC, spatial cross-correlation (SCC), and temporal cross-
correlation (TCC). The outcomes underscore the indis-
pensability of both spatial and temporal cross-correlation
mechanisms. Notably, the Convolutional Block and Trans-
former Block act as pivotal elements in shaping the feature
representation, while the inclusion of spatial and temporal
cross-correlationmechanisms enhances themodel’s capacity
for capturing intricate spatial-temporal dependencies. These
findings emphasize the separate effectiveness and interplay
of components within the STTrans architecture, highlighting
its holistic design for effectivemulti-camera depth estimation
in driving scenarios.

Ablation study of overlapping proportion Overlap regions
are very critical in self-supervised depth estimation in two
aspects, cross-view correlation and photometric loss calcu-
lation. To explore the significance of overlapping regions,
we conduct an ablation experiment by applying a mask to
exclude different proportions of the overlap area. As shown
in Fig. 9, we illustrate the overlap region with red lines
and the applied mask with blue blocks, taking 1/3 masking
in Front-Left, Front, and Front-right cameras as an exam-
ple. According to the experiment results in Table 8, model
performance degrades as the proportion of the overlap area
decreases, verifying the value of view overlaps.

4.5.4 Ablation study for adversarial geometry
regularization (AGR)

We extend our exploration to the position embedding
approach within the Adversarial Geometry Regularization
(AGR) module, conducting an insightful ablation study. In
our analysis, we introduce a variant denoted as AGR (w/
concat), inspired by the methodology presented in the work
by [71]. This variant integrates arbitrary depth maps and

Table 8 Ablation study of remained overlapping proportions, including
0%, 1/3, 2/3 and 100%, after being excluded with masks

Overlap Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
0 0.248 3.028 7.013 0.336

1/3 0.240 2.962 6.906 0.320

2/3 0.236 2.952 6.738 0.317

1 0.233 2.815 6.681 0.312
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Table 9 Ablation study of AGR
on Nuscenes [26]

Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
AGR (w/ concat) 0.235 2.851 6.697 0.314

AGR 0.233 2.815 6.681 0.312

AGR (w/ concat) means directly using the concatenation of depth maps and positions

2D pixel coordinates through a concatenation process. The
ablation results, outlined in Table 9, showcase the distinct
performances of these approaches. Notably, our proposed
depth-aware positional embedding operation demonstrates
superior efficacy compared to the simpler concatenation
strategy, affirming the significance of our design choice in
enhancing the overall performance of the AGRmodule. This
observation reinforces the critical role of thoughtful posi-
tional embedding strategies in optimizing depth estimation
under adverse conditions within the self-supervised multi-
camera context.

4.6 Qualitative evaluation results

In Fig. 10,we present the qualitative evaluation results, show-
casing the effectiveness of our proposedmethod. The top four
rows depict input images and the corresponding predicted
depth maps from the Nuscenes dataset, while the bottom
four rows showcase analogous results from the DDAD
dataset. The visual inspection of these results underscores
the capability of our method to generate high-quality depth

maps. Notably, our approach excels in capturing fine con-
textual details and delineating clear borders around objects.
This qualitative assessment provides a compelling visual
demonstration of the robustness and accuracy of our depth
estimation method across diverse scenes and datasets.

4.7 Model computational efficiency

To investigate the impact of model computational require-
ments on model performance, we compare our method with
other state-of-the-art methods in Table 10. “SurroudDepth-
T” and “EGA-Depth-T” are the corresponding variants of
state-of-the-art methods utilizing multiple temporal frames.
According to the results in Table 10, our method can achieve
better performance (4% and 36% improvement on Surround-
Depth and SurroundDepth-T; 1.6% and 1.7% improvement
on EGA-Depth and EGA-Depth-T) with comparable com-
putation requirements. We also test the inference time of one
batch (6 images) on a single RTX 4090. According to the
results, our method can achieve a better trade-off between
performance and efficiency.

Fig. 10 Qualitative evaluation
results and comparison with
other state-of-the-art methods
on Nuscenes (top three rows)
and DDAD (bottom six rows).
For each scene, we show the
front, front-left, back-left, back,
back-right, and front-right
camera views from left to right.
The predicted depth maps of our
methods on both datasets
display flatter ground, clearer
object contour, and finer texture
details, as highlighted in green
boxes
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Table 10 Model computational
efficiency comparison

Methods Abs Rel ↓ RMSE ↓ GFLOPs ↓ Inference time(s)↓
SurroudDepth 0.245 6.835 132.32 0.086

SurroudDepth-T 0.368 7.315 220.15 0.132

EGA-Depth 0.239 6.801 64.94 0.044

EGA-Depth-T 0.237 6.769 91.56 0.062

Ours(single) 0.235 6.736 68.66 0.048

Ours 0.233 6.681 96.80 0.068

5 Conclusion, limitations, and future
directions

In this work, we introduced STViT+, a Transformer-based
framework designed to tackle the complex challenges of
self-supervised multi-camera depth estimation, specifically
improving depth prediction in autonomous driving sys-
tems. The core of our approach lies in the Spatial-Temporal
Transformer (STTrans), which captures both local spatial
relationships and global contextual information, enabling
more precise 3D geometry reconstruction across multiple
camera views. To enhance stability in depth estimation,
we incorporated the Spatial-Temporal Photometric Consis-
tency Correction (STPCC), which effectively mitigates the
impact of illumination variability across frames. Further-
more, theAdversarial Geometry Regularization (AGR)mod-
ule imposes stronger spatial constraints, significantly boost-
ing performance under challenging conditions such as night-
time driving. Extensive evaluations on large-scale datasets,
including NuScenes and DDAD, confirmed the robustness
and efficiency of our approach, positioning STViT+ as a
leading solution formulti-camera depth estimation.Our abla-
tion studies further underscore the contributions of each
component, highlighting the comprehensive strength of the
framework.

Despite these promising improvements, STViT+ has cer-
tain limitations. While STPCC efficiently handles illumi-
nation variability, it struggles in extreme conditions such
as complete darkness or intense glare, where photometric
cues are unreliable. These scenarios, particularly in nighttime
driving, remain challenging for accurate depth estimation.
Additionally, the lack of diverse, high-quality training data
continues to constrain the model’s generalization. Although
NuScenes and DDAD offer valuable resources, the limited
coverage of extreme conditions like poor lighting, nighttime
driving, and adverse weather hampers broader applicability.

Looking forward, future research should focus on enhanc-
ing the robustness of depth estimation models, especially in
challenging and long-tailed cases such as nighttime driving,
low-light conditions, and extreme weather. Addressing these
challenges will require more extensive and diverse datasets,
along with comprehensive benchmarks tailored to these sce-
narios.

Author Contributions Conceptualization, Zhuo Chen and Haimei
Zhao; data curation, Zhuo Chen and Haimei Zhao; experiments, Zhuo
Chen, Haimei Zhao, and Xiaoshuai Hao; paper writing, Zhuo Chen,
Haimei Zhao, Xiaoshuai Hao, Bo Yuan, and Xiu Li; investigation, Bo
Yuan and Xiu Li. All authors have read and agreed to the published
version of the manuscript.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Data Availability The datasets used in this paper were derived from
sources in the public domain: https://www.cvlibs.net/datasets/kitti/ and
https://github.com/TRI-ML/DDAD, reference number [17] and [18].

Declarations

Competing Interests: There is NO Competing Interest.

Ethical and informed consent for data used: This article does not
contain any studies with human participants performed by any of the
authors. The data used in this study were obtained from publicly avail-
able autonomous driving datasets (e.g., Nuscenes, DDAD). All data
were anonymized to protect the privacy of individuals. The use of these
datasets complieswith the terms and conditions set by the data providers
and adheres to ethical guidelines for data usage in research.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. WangY,ChaoW-L,GargD,HariharanB,CampbellM,Weinberger
KQ (2019) Pseudo-lidar from visual depth estimation: Bridging the
gap in 3d object detection for autonomous driving. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp 8445–8453

123

https://www.cvlibs.net/datasets/kitti/
https://github.com/TRI-ML/DDAD,
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


STViT+: Improving Self-supervised Multi-Camera Depth Estimation... Page 17 of 20 328

2. Dong X, Garratt MA, Anavatti SG, Abbass HA (2022) Towards
real-time monocular depth estimation for robotics: A survey. IEEE
Trans Intell Transp Syst 23(10):16940–16961

3. YangX,Chen J,DangY,LuoH,TangY,LiaoC,ChenP,ChengK-T
(2019) Fast depth prediction and obstacle avoidance on a monoc-
ular drone using probabilistic convolutional neural network. IEEE
Trans Intell Transp Syst 22(1):156–167

4. El Jamiy F, Marsh R (2019) Distance estimation in virtual real-
ity and augmented reality: A survey. In: 2019 IEEE International
conferenceon electro information technology (EIT), IEEE, pp063–
068

5. Abed A, Akrout B, Amous I (2024) Deep learning-based few-shot
person re-identification from top-view rgb and depth images. Neu-
ral Comput & Applic pp 1–18

6. WeiQ, Shan J,ChengH,YuZ,LijuanB,HaimeiZ (2016)Amethod
of 3D human-motion capture and reconstruction based on depth
information. In: 2016 IEEE International conference on mecha-
tronics and automation. IEEE, pp 187–192

7. Li Y, Ge Z, Yu G, Yang J, Wang Z, Shi Y, Sun J, Li Z (2023)
Bevdepth: Acquisition of reliable depth for multi-view 3d object
detection. In: Proceedings of the AAAI conference on artificial
intelligence, vol 37, pp 1477–1485

8. Zhao H, Zhang Q, Zhao S, Chen Z, Zhang J, Tao D (2024) Simdis-
till: Simulated multi-modal distillation for bev 3d object detection.
In: Proceedings of the AAAI conference on artificial intelligence,
vol 38, pp 7460–7468

9. Reda M, Onsy A, Haikal AY, Ghanbari A (2024) Path planning
algorithms in the autonomous driving system: A comprehensive
review. Robot Auton Syst 174:104630

10. Müller H, Niculescu V, Polonelli T, Magno M, Benini L
(2023) Robust and efficient depth-based obstacle avoidance for
autonomous miniaturized uavs. IEEE Trans Robot

11. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097–1105

12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 770–778

13. Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from
a single image using a multi-scale deep network. In: Advances in
neural information processing systems, pp 2366–2374

14. Yin W, Liu Y, Shen C, Yan Y (2019) Enforcing geometric con-
straints of virtual normal for depth prediction. In: Proceedings of
the IEEE/CVF international conference on computer vision, pp
5684–5693

15. Fu H, Gong M, Wang C, Batmanghelich K, Tao D (2018) Deep
ordinal regression network formonocular depth estimation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp 2002–2011

16. Bhat SF, Alhashim I, Wonka P (2021) Adabins: Depth estimation
using adaptive bins. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp 4009–4018

17. Zhou T, Brown M, Snavely N, Lowe DG (2017) Unsupervised
learning of depth and ego-motion from video. In: Proceedings of
the IEEE conference on computer vision and pattern recognition

18. Godard C, Mac Aodha O, Firman M, Brostow GJ (2019) Digging
into self-supervised monocular depth estimation. In: Proceedings
of the IEEE international conference on computer vision, pp 3828–
3838

19. Zhao C, Zhang Y, Poggi M, Tosi F, Guo X, Zhu Z, Huang G,
Tang Y, Mattoccia S (2022) Monovit: Self-supervised monoc-
ular depth estimation with a vision transformer. arXiv preprint
arXiv:2208.03543

20. Watson J,MacAodhaO, PrisacariuV,BrostowG,FirmanM(2021)
The temporal opportunist: Self-supervised multi-frame monocular

depth. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 1164–1174

21. Guizilini V, Ambrus, R, Chen D, Zakharov S, Gaidon A (2022)
Multi-frame self-supervised depth with transformers. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, pp 160–170

22. Zhang S, Zhao C (2023) Dyna-depthformer: Multi-frame trans-
former for self-supervised depth estimation in dynamic scenes.
arXiv preprint arXiv:2301.05871

23. Guizilini V, Vasiljevic I, Ambrus R, Shakhnarovich G, Gaidon
A (2022) Full surround monodepth from multiple cameras. IEEE
Robot Autom Lett 7(2):5397–5404

24. Wei Y, Zhao L, Zheng W, Zhu Z, Rao Y, Huang G, Lu J, Zhou
J (2023) Surrounddepth: Entangling surrounding views for self-
supervisedmulti-camera depth estimation. In: Conference on robot
learning, PMLR, pp 539–549

25. Xu J, Liu X, Bai Y, Jiang J, Wang K, Chen X, Ji X (2022)
Multi-camera collaborative depth prediction via consistent struc-
ture estimation. In: Proceedings of the 30th ACM international
conference on multimedia, pp 2730–2738

26. Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan
A, Pan Y, Baldan G, Beijbom O (2020) nuscenes: A multimodal
dataset for autonomous driving. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 11621–
11631

27. Guizilini V, Ambrus R, Pillai S, Raventos A, Gaidon A (2020) 3d
packing for self-supervised monocular depth estimation. In: IEEE
Conference on computer vision and pattern recognition (CVPR)

28. Chen Z, Zhao H, Yuan B, Li X (2024) Stvit: Improving self-
supervised multi-camera depth estimation with spatial-temporal
context and adversarial geometry regularization (student abstract).
In: Proceedings of the AAAI conference on artificial intelligence,
vol 38, pp 23460–23461

29. Mahjourian R, Wicke M, Angelova A (2018) Unsupervised learn-
ing of depth and ego-motion from monocular video using 3d
geometric constraints. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 5667–5675

30. Shu C, Yu K, Duan Z, Yang K (2020) Feature-metric loss for
self-supervised learning of depth and egomotion. In: European con-
ference on computer vision, Springer, pp 572–588

31. PoggiM,Aleotti F, Tosi F,Mattoccia S (2020)On the uncertainty of
self-supervisedmonocular depth estimation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 3227–3237

32. Yang N, Stumberg Lv, Wang R, Cremers D (2020) D3vo: Deep
depth, deep pose and deep uncertainty for monocular visual odom-
etry. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 1281–1292

33. Zhao H, Zhang J, Zhang S, Tao D (2022) Jperceiver: joint per-
ception network for depth, pose and layout estimation in driving
scenes. In: European conference on computer vision. Springer, pp
708–726

34. Zhao H, Bian W, Yuan B, Tao D (2020) Collaborative learning of
depth estimation, visual odometry and camera relocalization from
monocular videos. In: IJCAI, pp 488–494

35. Yin Z, Shi J (2018) Geonet: Unsupervised learning of dense depth,
optical flow and camera pose. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 1983–1992

36. ZhouH,GreenwoodD, Taylor S (2021) Self-supervisedmonocular
depth estimation with internal feature fusion. In: British machine
vision conference (BMVC)

37. ZhaoW,LiuS, ShuY,LiuY-J (2020)Towards better generalization:
Joint depth-pose learningwithout posenet. In: Proceedings of IEEE
conference on computer vision and pattern recognition

38. Klingner M, Termöhlen J-A, Mikolajczyk J, Fingscheidt T (2020)
Self-supervised monocular depth estimation: Solving the dynamic

123

http://arxiv.org/abs/2208.03543
http://arxiv.org/abs/2301.05871


328 Page 18 of 20 Z. Chen et al.

object problem by semantic guidance. In: European conference on
computer vision, Springer, pp 582–600

39. Jung H, Park E, Yoo S (2021) Fine-grained semantics-aware
representation enhancement for self-supervised monocular depth
estimation. In: Proceedings of the IEEE international conference
on computer vision, pp 12642–12652

40. Bae J, Moon S, Im S (2022) Deep digging into the generaliza-
tion of self-supervised monocular depth estimation. arXiv preprint
arXiv:2205.11083

41. Liu Z, Li R, Shao S,WuX, ChenW (2023) Self-supervisedmonoc-
ular depth estimation with self-reference distillation and disparity
offset refinement. IEEE Trans Circ Syst Vid Technol

42. Sun K, Xiao B, Liu D, Wang J (2019) Deep high-resolution repre-
sentation learning for human pose estimation. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recog-
nition, pp 5693–5703

43. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X,
Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S et al
(2020) An image is worth 16x16 words: Transformers for image
recognition at scale. In: International conference on learning rep-
resentations

44. Vankadari M, Garg S, Majumder A, Kumar S, Behera A (2020)
Unsupervised monocular depth estimation for night-time images
using adversarial domain feature adaptation. In: Computer vision–
ECCV 2020: 16th European conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXVIII 16, Springer, pp 443–459

45. WangW, Xu Z, Huang H, Liu J (2022) Self-aligned concave curve:
Illumination enhancement for unsupervised adaptation. In: Pro-
ceedings of the 30th ACM international conference onmultimedia,
pp 2617–2626

46. ZhengY, Zhong C, Li P, GaoH-a, ZhengY, Jin B,Wang L, ZhaoH,
ZhouG,ZhangQet al (2023) Steps: Joint self-supervised nighttime
image enhancement and depth estimation. Proceedings of the IEEE
international conference on robotics and automation

47. Ruhkamp P, Gao D, Chen H, Navab N, Busam B (2021) Attention
meets geometry: Geometry guided spatial-temporal attention for
consistent self-supervised monocular depth estimation. In: 2021
International conference on 3d vision (3DV), IEEE, pp 837–847

48. Kendall A, Martirosyan H, Dasgupta S, Henry P, Kennedy R,
Bachrach A, Bry A (2017) End-to-end learning of geometry and
context for deep stereo regression. In: Proceedings of the IEEE
international conference on computer vision, pp 66–75

49. Sun D, Yang X, LiuM-Y, Kautz J (2018) Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp 8934–8943

50. Feng C, Chen Z, Zhang C, HuW, Li B, Lu F (2023) Iterdepth: Iter-
ative residual refinement for outdoor self-supervised multi-frame
monocular depth estimation. IEEE Trans Circ Syst Vid Technol

51. Miao X, Bai Y, Duan H, Huang Y, Wan F, Xu X, Long Y, Zheng Y
(2023) Ds-depth: Dynamic and static depth estimation via a fusion
cost volume. IEEE Trans Circ Syst Vid Technol

52. ShiY,CaiH,AnsariA, Porikli F (2023)Ega-depth: Efficient guided
attention for self-supervised multi-camera depth estimation. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp 119–129

53. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville, A,BengioY (2014)Generative adversarial nets.
Adv Neural Inform Process Syst 27

54. Jing Y, Yang Y, Feng Z, Ye J, Yu Y, Song M (2019) Neural
style transfer: A review. IEEE Trans Visual Comput Graphics
26(11):3365–3385

55. Xu W, Long C, Wang R, Wang G (2021) Drb-gan: A dynamic res-
block generative adversarial network for artistic style transfer. In:
Proceedings of the IEEE/CVF international conference on com-
puter vision, pp 6383–6392

56. Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image transla-
tion with conditional adversarial networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
1125–1134

57. Zhu J-Y, ParkT, Isola P, EfrosAA (2017)Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: Pro-
ceedings of the IEEE international conference on computer vision,
pp 2223–2232

58. Zhu J-Y, Krähenbühl P, Shechtman E, Efros AA (2016) Gen-
erative visual manipulation on the natural image manifold. In:
Computer vision–ECCV 2016: 14th European conference, Ams-
terdam, The Netherlands, October 11-14, 2016, Proceedings, Part
V 14, Springer, pp 597–613

59. Chen Z, Wang C, Yuan B, Tao D (2020) Puppeteergan: Arbitrary
portrait animation with semantic-aware appearance transforma-
tion. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 13518–13527

60. Chen Z, Wang C, Zhao H, Yuan B, Li X (2022) D2animator: Dual
distillation of stylegan for high-resolution face animation. In: Pro-
ceedings of the 30th ACM international conference onmultimedia,
pp 1769–1778

61. Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D
(2017) Unsupervised pixel-level domain adaptation with genera-
tive adversarial networks. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 3722–3731

62. Deng W, Zheng L, Ye Q, Kang G, Yang Y, Jiao J (2018)
Image-image domain adaptation with preserved self-similarity and
domain-dissimilarity for person re-identification. In: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp 994–1003

63. CS Kumar A, Bhandarkar SM, Prasad M (2018) Monocular depth
prediction using generative adversarial networks. In: Proceedings
of the IEEE conference on computer vision and pattern recognition
workshops, pp 300–308

64. Zhao C, Yen GG, Sun Q, Zhang C, Tang Y (2020) Masked gan
for unsupervised depth and pose prediction with scale consistency.
IEEE Trans Neural Netw Learn Syst

65. Xu Y, Wang Y, Huang R, Lei Z, Yang J, Li Z (2022) Unsupervised
learning of depth estimation and camera posewithmulti-scale gans.
IEEE Trans Intell Transp Syst 23(10):17039–17047

66. Zheng C, Cham T-J, Cai J (2018) T2net: Synthetic-to-realistic
translation for solving single-image depth estimation tasks. In: Pro-
ceedings of the European conference on computer vision (ECCV),
pp 767–783

67. Zhao S, Fu H, Gong M, Tao D (2019) Geometry-aware symmetric
domain adaptation formonocular depth estimation. In: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp 9788–9798

68. Sun Q, Yen GG, Tang Y, Zhao C (2023) Learn to adapt for self-
supervised monocular depth estimation. IEEE Trans Neural Netw
Learn Syst

69. Gaidon A,Wang Q, Cabon Y, Vig E (2016) Virtual worlds as proxy
for multi-object tracking analysis. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 4340–
4349

70. Wu Z, Wu X, Zhang X, Wang S, Ju L (2019) Spatial correspon-
dence with generative adversarial network: Learning depth from
monocular videos. In: Proceedings of the IEEE/CVF international
conference on computer vision, pp 7494–7504

71. Wang K, Zhang Z, Yan Z, Li X, Xu B, Li J, Yang J (2021) Regu-
larizing nighttime weirdness: Efficient self-supervised monocular
depth estimation in the dark. In: Proceedings of the IEEE/CVF
international conference on computer vision, pp 16055–16064

72. LeeY,Kim J,Willette J, Hwang SJ (2022)Mpvit:Multi-path vision
transformer for dense prediction. In: Proceedings of the IEEE/CVF

123

http://arxiv.org/abs/2205.11083


STViT+: Improving Self-supervised Multi-Camera Depth Estimation... Page 19 of 20 328

conference on computer vision and pattern recognition, pp 7287–
7296

73. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP et al (2004) Image
quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process 13(4):600–612

74. GodardC,MacAodhaO,BrostowGJ (2017)Unsupervisedmonoc-
ular depth estimation with left-right consistency. In: Proceedings
of the IEEE conference on computer vision and pattern recognition

75. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A,
Greer T, Haar Romeny B, Zimmerman JB, Zuiderveld K (1987)
Adaptive histogram equalization and its variations. ComputVision,
graph Image Process 39(3):355–368

76. Dijk Tv, Croon Gd (2019) How do neural networks see depth in
single images? In: Proceedings of the IEEE/CVF international con-
ference on computer vision, pp. 2183–2191

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Zhuo Chen received the B.Eng.
degree and the Ph.D. degree
in automation from Tsinghua
University, China in 2017 and
2024. His research interests
include computer vision, image
generation, video generation,
multi-modal large model.

Haimei Zhao received the Ph.D.
degree in computer science from
the University of Sydney, Aus-
tralia in 2024, and the M.Phil.
degree from Tsinghua University,
China in 2020. She is currently a
Postdoc research fellow in at the
University of Sydney, Australia.

Her research interest is com-
puter vision, autonomous driving,
AI for biomedical science, and
digital health.

Xiaoshuai Hao obtained his Ph.D.
from the Institute of Informa-
tion Engineering at the Chinese
Academy of Sciences in 2023. He
is currently a researcher specializ-
ing in embodied multimodal large
models at the Beijing Academy
of Artificial Intelligence. His
research interests encompass mul-
timedia retrieval, multimodal
learning, and embodied intelli-
gence.

Bo Yuan (Senior Member, IEEE)
received the B.E. degree in Com-
puter Science from the Nanjing
University of Science and Tech-
nology, Nanjing, China, in 1998,
and the M.Sc. and Ph.D. degrees
in Computer Science from the
University of Queensland (UQ),
St Lucia, QLD, Australia, in
2002 and 2006, respectively.
From 2006 to 2007, he worked
as a Research Officer on a
project funded by the Australian
Research Council at UQ. From
2007 to 2021, he was a Faculty

Member at the Division of Informatics, Tsinghua Shenzhen Inter-
national Graduate School, Shenzhen, China, where he served as a
Lecturer (2007 - 2009) and Associate Professor (2009 - 2021). Dur-
ing this period, he also held the role of Deputy Director of the Office
of Academic Affairs (2013 - 2020). He has authored more than 140
papers in refereed international conferences and journals. His research
interests include data science, evolutionary computation, and intelli-
gent decision making.

Xiu Li (Member, IEEE) received
the Ph.D. degree in computer
integrated manufacturing from
Nanjing University of Aeronau-
tics and Astronautics in 2000.
From then to 2002, she was a
Postdoctoral Fellow with the
Department of Automation,
Tsinghua University, Beijing,
China. From 2003 to 2010, she
was an Associate Professor with
the Department of Automation,
Tsinghua University, Beijing,
China. Since 2016, She has been a
Full Professor at Shenzhen Inter-

national Graduate School, Tsinghua University. In recent years, she
has authored more than 100 papers in peer-reviewed journals and con-
ferences. Among them, more than 20 papers have been published in
top journals and conferences, such as the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE
Transactions on Neural Networks and Learning Systems, and CVPR,
ICCV. Her research interests include computer vision, pattern recog-
nition, and image processing.

123



328 Page 20 of 20 Z. Chen et al.

Authors and Affiliations

Zhuo Chen1 · Haimei Zhao2 · Xiaoshuai Hao3 · Bo Yuan4 · Xiu Li1

B Haimei Zhao
hzha7798@uni.sydney.edu.au

Zhuo Chen
z-chen17@tsinghua.org.cn

Xiaoshuai Hao
xshao@baai.ac.cn

Bo Yuan
boyuan@ieee.org

Xiu Li
li.xiu@sz.tsinghua.edu.cn

1 Shenzhen International Graduate School, Tsinghua University,
Shenzhen 518055, Guangdong, China

2 School of Computer Science, The University of Sydney,
Sydney 2008, NSW, Australia

3 Beijing Academy of Artificial Intelligence, Beijing, China

4 School of Electrical Engineering and Computer Science, The
University of Queensland, Brisbane, QLD 4072, Australia

123

http://orcid.org/0000-0003-2140-8657
http://orcid.org/0000-0003-1139-4183

	STViT+: improving self-supervised multi-camera depth estimation with spatial-temporal context and adversarial geometry regularization
	Abstract
	1 Introduction
	2 Related work
	2.1 Monocular single-frame self-supervised depth estimation
	2.2 Monocular multi-frame self-supervised depth estimation
	2.3 Multi-camera self-supervised depth estimation
	2.4 Self-supervised depth estimation  with generative adversarial networks

	3 Method
	3.1 Network architecture of STViT+
	3.1.1 Motivation
	3.1.2 Depth network
	3.1.3 Pose network

	3.2 Self-supervised training
	3.2.1 Spatial-temporal photometric loss
	3.2.2 Spatial-temporal photometric consistency correction (STPCC)

	3.3 Adversarial geometry regularization module (AGR)
	3.4 Training loss

	4 Experiment
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Implementation details
	4.4 Comparison with the state-of-the-arts
	4.5 Ablation study
	4.5.1 Performance of individual cameras
	4.5.2 Ablation study for proposed contributions
	4.5.3 Ablation study for spatial-temporal transformer (STTrans)
	4.5.4 Ablation study for adversarial geometry regularization (AGR)

	4.6 Qualitative evaluation results
	4.7 Model computational efficiency

	5 Conclusion, limitations, and future directions
	References


