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A B S T R A C T

Map construction task plays a vital role in providing precise and comprehensive static environmental informa-
tion essential for autonomous driving systems. Primary sensors include cameras and LiDAR, with configurations
varying between camera-only, LiDAR-only, or camera-LiDAR fusion, based on cost-performance considerations.
While fusion-based methods typically perform best, existing approaches often neglect modality interaction and
rely on simple fusion strategies, which suffer from the problems of misalignment and information loss. To
address these issues, we propose MapFusion, a novel multi-modal Bird’s-Eye View (BEV) feature fusion method
for map construction. Specifically, to solve the semantic misalignment problem between camera and LiDAR
BEV features, we introduce the Cross-modal Interaction Transform (CIT) module, enabling interaction between
two BEV feature spaces and enhancing feature representation through a self-attention mechanism. Additionally,
we propose an effective Dual Dynamic Fusion (DDF) module to adaptively select valuable information from
different modalities, which can take full advantage of the inherent information between different modalities.
Moreover, MapFusion is designed to be simple and plug-and-play, easily integrated into existing pipelines.
We evaluate MapFusion on two map construction tasks, including High-definition (HD) map and BEV map
segmentation, to show its versatility and effectiveness. Compared with the state-of-the-art methods, MapFusion
achieves 3.6% and 6.2% absolute improvements on the HD map construction and BEV map segmentation tasks
on the nuScenes dataset, respectively, demonstrating the superiority of our approach.
. Introduction

Map construction task provides abundant and precise static environ-
ental information of the driving scene, which is vital yet challenging

or planning in autonomous driving systems. Recently, researchers have
ocused on two crucial tasks: High-definition (HD) map construction
nd semantic map construction. Both tasks increasingly utilize the
ird’s Eye View (BEV) representation as an ideal feature space for
ulti-view perception, thanks to its effectiveness in addressing scale

mbiguity and occlusion challenges. Specifically, HD map construc-
ion methods [1–7] consider this task as the problem of predicting a
ollection of vectorized static map elements in bird’s-eye view (BEV),
uch as pedestrian crossing, lane divider, road boundaries, etc. On

∗ Corresponding authors.
E-mail addresses: xshao@baai.ac.cn (X. Hao), diaoyunfeng@hfut.edu.cn (Y. Diao), mc.wei@samsung.com (M. Wei), yifan.yang@samsung.com (Y. Yang),

eng1.hao@samsung.com (P. Hao), yinrong@iie.ac.cn (R. Yin), hui123.zhang@samsung.com (H. Zhang), weiming.li@samsung.com (W. Li), smz5505@psu.edu
S. Zhao), yuliu@hfut.edu.cn (Y. Liu).

the other hand, semantic map construction methods [8–11] treat map
construction as a BEV semantic segmentation task, where each pixel in
the BEV plane is assigned a semantic label.

Based on the input sensor modality, map construction methods
can be categorized into camera based [6,12,13], LiDAR based [14,15]
and camera-LiDAR fusion [1–3,11,16,17] methods. Camera sensors
capture rich semantic information, but methods relying solely on them
often struggle with spatial distortions when projecting Perspective
View (PV) features into Bird’s Eye View (BEV) using geometric priors.
In contrast, LiDAR provides explicit geometric data with point-wise
depth information, though it faces challenges related to data sparsity
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Fig. 1. Illustration of different modalities BEV features. Although both LiDAR and camera BEV features are presented in the shared BEV space, they may still be semantically
misaligned due to the significant modality gap. (Blue color means small values and red means large).
and sensing noise. To maximize the advantages of both modalities,
recent advancements in camera-LiDAR BEV feature fusion have gained
traction, effectively leveraging the semantic richness of camera data
alongside the precise geometric information from LiDAR.

Recently, BEV-level fusion methods have gained significant atten-
tion for their ability to encode raw inputs from camera and LiDAR
sensors into features within the same BEV space using two indepen-
dent streams. These methods are popular because they harmonize
information from different modalities while maintaining spatial con-
sistency. However, as illustrated in Fig. 1, LiDAR and camera BEV
features can still exhibit semantic misalignment within the shared BEV
space due to the substantial modality gap. Furthermore, existing BEV-
level fusion approaches often overlook modality interaction, relying on
simple element-wise operations to combine modalities, such as sum-
mation [18], weighted averaging [19], or concatenation [1,11]. These
naive fusion strategies fail to effectively address modality misalign-
ment and do not mitigate information loss during the fusion process.
Addressing these challenges is the motivation behind our work.

To effectively mitigate modality misalignment and information loss,
a multi-modal fusion method should incorporate the following char-
acteristics. First, it should enable interaction and integration across
multiple modalities. Modality interaction involves enhancing features
from one modality using information from another, thereby reducing
misalignment. In contrast, modality integration fuses the well-aligned
features from different modalities to produce the final output. Second,
the method should employ a variety of operations, such as attention
for global information exchange, convolution for effective local infor-
mation aggregation, and weighting across both spatial and channel
domains. This combination allows for the accumulation of each op-
eration’s strengths, leading to high-quality fusion. Currently, existing
approaches only incorporate some of these elements, resulting in sub-
optimal fusion performance. To address these issues, we propose a
novel multi-modal BEV feature fusion method for map construction,
named MapFusion, which consists of the CIT and DDF modules to in-
clude both modality interaction and integration. To tackle the semantic
misalignment between camera and LiDAR BEV features, we propose the
new Cross-modal Interaction Transform (CIT) module, which facilitates
interaction between the two BEV feature spaces and enhances feature
representation using a self-attention mechanism. Specifically, we utilize
a correlation matrix to weight each position in the input multi-modal
BEV features. This allows the CIT module to perform simultaneous
intra-modality and inter-modality fusion across spatial locations, ef-
fectively capturing complementary information across different BEV
modalities and mitigating modality misalignment. To further refine the
2

feature fusion from different modalities, we propose an effective Dual
Dynamic Fusion (DDF) module to adaptively select valuable informa-
tion from different modalities in a soft manner. In summary, CIT acts
as modality interaction, providing flexibility by allowing fusion across
both spatial locations and modalities, while DDF refines and fuses the
CIT results by concentrating on modality-specific information. Both
modules are indispensable for achieving optimal performance. Impor-
tantly, the core components of MapFusion, i.e., CIT module and DDF
module, are simple yet effective plug-and-play techniques compatible
with existing pipelines for various map tasks. Extensive experiments on
several benchmarks demonstrate the superiority of our method.

Our main contributions are summarized as follows:

• To address the Bird’s-Eye View (BEV) feature fusion challenge
in the multi-modal map construction task, we introduce MapFu-
sion, a novel method that leverages complementary information
from BEV features across different modalities with both modality
interaction and integration.

• To solve the semantic misalignment problem between camera
and LiDAR BEV features, we propose the Cross-modal Interaction
Transform (CIT) module, facilitating interaction between the two
BEV feature spaces and enhancing feature representation through
a self-attention mechanism.

• For better feature fusion, we propose an effective Dual Dynamic
Fusion (DDF) module to adaptively select valuable information
from different modalities.

• Compared with the state-of-the-art methods, MapFusion achieves
3.6% and 6.2% absolute improvements on the HD map construc-
tion and BEV map segmentation tasks on the nuScenes dataset,
respectively, demonstrating the superiority of our approach.

The rest of this paper is organized as follows. We briefly review
related works in Section 2. In Section 3, we introduce our proposed
method. We then present a variety of experimental results and analyses
in Section 4. Finally, Section 5 concludes this paper. This paper is an
extension of our preliminary work [20] published on ICRA 2024. The
main differences between this paper and the conference version are:
(1) General Algorithm for BEV-based Multi-Modal Map Construction.
More BEV-based Multi-Modal Map Construction task is realized to
validate that our MapFusion, namely the CIT and DDF modules, are
effective plug-and-play techniques compatible with existing pipelines
for various map tasks. In the conference version we only experimented
with vectorized HD map construction task, and in this paper we fur-
ther include BEV map segmentation task as the new evidence of the
versatility and effectiveness of our method. (2) Enhanced Insights into
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Fig. 2. Illustration of different map construction tasks (HD map construction and BEV map segmentation).
the CIT Module. We provide an internal diagram (see Fig. 4) and
equation (see Eq. (5)) to clarify the theoretical foundations of the CIT
module, enhancing understanding of its mechanisms. The main idea
behind our CIT module is to leverage the self-attention mechanism to
learn the binary relationships between camera and LiDAR modalities.
Specifically, we utilize a correlation matrix to weight each position
of the input feature maps, formulated as Eq. (5), where 𝛼𝑖,𝑗 repre-
sents the correlation between the 𝑖th and 𝑗th positions on the feature
maps. This leads to the inference of four matrix blocks when calcu-
lating the correlation matrix 𝛼: two intra-modality correlation matrix
blocks (for Camera and LiDAR) and two inter-modality correlation
matrix blocks, as illustrated in Fig. 4. Consequently, the CIT module
can adaptively perform simultaneous intra-modality and inter-modality
information fusion, comprehensively capturing complementary infor-
mation between BEV features of different modalities. (3) Extensive
Ablation Studies and Analysis. We conduct additional ablation studies
to validate the effectiveness of each proposed component across two
BEV-based multi-modal map construction tasks. These studies include:
the contributions of CIT and DDF (See Tables 5 and 6), variations of
different fusion methods (See Tables 7 and 8), compatibility with other
HD map construction methods (See Table 9), and an analysis of the
accuracy-computation trade-off using our proposed CIT module and
different fusion strategies (See Fig. 7). Based on these ablation exper-
iments, we also conduct a deeper analysis of the working mechanism
of our method. (4) More Visualization Results. We include additional
visualization results to further illustrate our findings. Fig. 8 shows the
visualization results of the t-SNE and the feature maps before and after
the CIT module, demonstrating the CIT module’s ability to mitigate
the misalignment between different modalities. Fig. 9 illustrates the
feature maps before and after the CIT module, which integrates various
modes of BEV features into a unified space. In addition, we present
the qualitative results of the CIT and DDF modules for the BEV map
segmentation and HD map tasks in Figs. 6 and 10, respectively.

2. Related work

Our work is highly related to map construction task (See Fig. 2) and
multi-sensor fusion methods, which will be discussed thoroughly in the
following.

2.1. Map construction task

HD map construction. HD map construction is a critical and
extensively researched area in autonomous driving. Based on input
sensor modalities, HD map construction models can be categorized
into camera-based [21–25], LiDAR-based [14,15] and camera-LiDAR
fusion [1–3,26,27] models. Camera-only methods [21–25] have in-
creasingly adopted the Bird’s-eye view (BEV) representation as an ideal
feature space for multi-view perception, owing to its remarkable ability
to mitigate scale ambiguity and occlusion challenges. Various tech-
niques have been proposed to project perspective view (PV) features
onto the BEV space by leveraging geometric priors, such as LSS [28],
3

Deformable Attention [29], and GKT [30]. Nevertheless, camera-only
methods lack explicit depth information, which forces them to rely
on higher resolution images or larger backbone models to achieve en-
hanced accuracy [29,31–36]. In contrast, LiDAR-only approaches [14,
15] benefit from the accurate 3D geometric information provided by
LiDAR input. However, they face challenges related to data sparsity and
sensing noise.

Recently, camera-LiDAR fusion methods [1–3] leverage the seman-
tic richness of camera data and the geometric information from LiDAR
in a collaborative manner. BEV-level fusion, which uses two indepen-
dent streams to encode raw inputs from camera and LiDAR sensors
into features within the same BEV space, has gained significant at-
tention [11,19]. This approach incorporates complementary modality
features, outperforming uni-modal input approaches. Existing HD map
construction multi-sensor fusion methods—HDMapNet [1], VectorMap-
Net [2], and MapTR [3]— utilize straightforward channel concatena-
tion and convolution for multi-modal feature fusion. However, these
methods overlook modality interaction and employ very simple fusion
strategies, leading to issues of misalignment and information loss.

BEV map segmentation. Semantic map construction methods [8–
11] take map construction as a BEV semantic segmentation task, as-
signing semantic labels to each pixel in the BEV plane. Building on
Perspective View (PV) segmentation [4,37], early approaches utilize
homography transformations to convert camera images into bird’s-eye
view (BEV) representations, followed by the estimation of segmentation
maps [38–41]. However, homography transformation introduces strong
artifacts, and BEV-based methods [6,11,12], i.e. performing segmenta-
tion directly on BEV plane, have received extensive attention. CVT [6]
employs a learned map embedding and an attention mechanism be-
tween map queries and camera features. Furthermore, BEVFusion [11],
BEVerse [39] and M2BEV [12] explore multi-task learning with 3D
object detection. However, these approaches lack explicit utilization of
depth information, resulting in unsatisfactory performance.

Existing fusion methods [16,17] primarily focus on object-centric
and geometry-oriented approaches. For instance, PointPainting [16]
enhances only the foreground LiDAR points, while MVP [17] concen-
trates solely on densifying foreground 3D objects. Both methods also
assume that LiDAR is the more effective modality for sensor fusion,
which may not be valid for map construction tasks [11]. Addition-
ally, X-Align [18] employs an integration method that combines the
features of the two modalities before applying attention, neglecting
modality interactions and relying on overly simplistic fusion strategies.
In summary, these methods utilize basic feature concatenation to merge
multi-modal features, necessitating the network to implicitly reconcile
information from misaligned features.

2.2. Multi-sensor fusion

Multi-sensor fusion has garnered significant attention in the field
of autonomous driving. Existing approaches can be broadly catego-
rized into three types: point-level fusion, feature-level fusion, and
BEV-level fusion. Point-level fusion methods [16,17,42–44] typically
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Fig. 3. An overview of MapFusion framework. First, we extract features from multi-modal inputs and convert them into a shared bird’s-eye view (BEV) space efficiently using
view transformations. To fuse the BEV features from different modalities, we first propose Cross-modal Interaction Transform (CIT) module to enhance one modality from another
modality by self-attention mechanism. Afterwards, we propose a Dual Dynamic Fusion (DDF) module to automatically select valuable information from different modalities for
better feature fusion. Finally, the fused multi-modal BEV features are fed into a shared decoder and prediction heads for map construction tasks.
project image semantic features onto foreground LiDAR points, en-
abling LiDAR-based detection on the enhanced point cloud. While
effective for 3D object detection tasks, these methods are less suitable
for semantically driven tasks such as BEV map segmentation [6,11,
12,19] and HD map construction [1–3]. This limitation stems from
the lossy projection of camera features to LiDAR, where only about
5% of camera features align with points from a typical 32-beam Li-
DAR scanner, resulting in significant information loss. Feature-level
fusion methods [45,46] first project LiDAR points into a feature space
or generate proposals, query the corresponding camera features, and
then concatenate them back into the feature space. However, both
point-level and feature-level fusion approaches encounter generaliza-
tion challenges. Specifically, point-level fusion is not easily extendable
to other sensor modalities, while feature-level fusion struggles with
generalization across different tasks.

Recently, multi-modal feature fusion in a unified BEV space has
gained considerable attention [1–3,11,19]. BEV-level fusion employs
two independent streams to encode raw inputs from camera and LiDAR
sensors into features within the same BEV space. This approach offers
a straightforward yet effective means to integrate BEV-level features
from both streams, facilitating their use in various downstream tasks.
However, existing BEV-level fusion methods often overlook modality
interactions, relying on element-wise operations (such as summation
or mean) or simple concatenation. This can lead to issues of mis-
alignment and information loss. In this paper, we propose a simple
and effective camera-LiDAR BEV feature fusion method that simultane-
ously integrates complementary information from different modalities,
specifically targeting multi-modal map construction tasks.

Comparison with Existing Works. This work differs from prior
literature in three key aspects. Firstly, we focus on the BEV-based
multi-modal map construction task, distinct from other BEV percep-
tion tasks [42,43,47], as it aims at predicting map elements, such as
pedestrian crossing, lane divider, road boundaries, etc. In fact, the
map construction task is a semantic-oriented task, which pays more
attention to the semantic information in the image. Therefore, the
performance of directly using the fusion method on the 3D object
detection task to the map task is not satisfactory. Secondly, to solve
the semantic misalignment problem between Camera and LiDAR BEV
features, we propose Cross-modal Interaction Transform (CIT) module
to enable the two BEV feature spaces to interact with each other and
enhance feature representation through a self-attention mechanism.
Additionally, to further fuse features from different modalities, we
propose an effective Dual Dynamic Fusion (DDF) module to adaptively
select valuable information from different modalities. To the best of
our knowledge, MapFusion is the first to explore the effectiveness of
interactive modules on multi-modal map construction tasks. Last but
4

not least, the core components of MapFusion, i.e., CIT module and DDF
module, are simple yet effective plug-and-play techniques compatible
with existing pipelines for various map tasks, such as HD map and
semantic map construction.

3. Methodology

We propose a novel multi-modal BEV map construction approach
called MapFusion, which is a simple yet effective plug-and-play tech-
nique compatible with existing pipelines for various map construction
tasks. The overview framework of MapFusion is shown in Fig. 3. Given
different sensory inputs, we first apply modality-specific encoders to
extract their features. These multi-modal features are then transformed
into a unified BEV representation that preserves both geometric and
semantic information. Then, we propose Cross-modal Interaction Trans-
form (CIT) module to make these two BEV feature spaces exchange
knowledge with each other to enhance the feature representation by
the self-attention mechanism. Additionally, we introduce a novel Dual
Dynamic Fusion (DDF) module to automatically select valuable infor-
mation from different modalities, which can take full advantage of
the inherent complementary information between different modalities.
Finally, the fused multi-modal BEV features are fed into decoder and
prediction heads for map construction tasks.

3.1. Preliminaries

For notation clarity, we first introduce some symbols and definitions
used throughout this paper. Our goal is to design a novel framework
taking multi-modal sensor data 𝜒 as input and predicting map elements
in BEV space, and the types of the map elements (supported types are
road boundary, lane divider, and pedestrian crossing, etc.). Formally,
assume that we have a set of inputs, 𝜒 = {𝐶 𝑎𝑚𝑒𝑟𝑎, 𝐿𝑖𝐷 𝐴𝑅}, con-
taining multi-view RGB camera images in perspective view, 𝐶 𝑎𝑚𝑒𝑟𝑎 ∈
R𝑁cam×𝐻cam×𝑊 cam×3, 𝑁cam, 𝐻cam, 𝑊 cam denote number of cameras, im-
age height, and image width, respectively, as well as a LiDAR point
cloud, 𝐿𝑖𝐷 𝐴𝑅 ∈ R𝑃×5, with number of points 𝑃 . Each point consists
of its 3-dimensional coordinates, reflectivity, and beam index. The
detailed architectural designs are described as follows.

3.2. Map encoder

We apply modality-specific encoders to extract their features and
transform multi-modal features into a unified BEV representation that
preserves both geometric and semantic information. Note that our
approach is compatible with other Map Encoders that can also be
employed to generate camera-only and LiDAR-only BEV features.
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Camera to BEV. We extract BEV features from multi-view RGB im-
ges with the BEV feature extractor. It consists of a backbone [31,48] to
xtract multi-scale 2D features from each perspective view, an FPN [49]
o refine and fuse multi-scale features into single-scale features, and a
D-to-BEV feature transformation module [4,30] to map 2D features
nto BEV features. The camera BEV features can be denoted as 𝐅BEV

Camer a ∈
𝐻×𝑊 ×𝐶 , where 𝐻 , 𝑊 , 𝐶 refer to the spatial height, spatial width, and

he number of channels of BEV feature maps, respectively.
LiDAR to BEV. For the LiDAR points, we follow SECOND [50] in

sing voxelization and a sparse LiDAR encoder. The LiDAR features are
rojected to BEV space using a flattening operation as in [11], to obtain

the unified LiDAR BEV representation 𝐅BEV
LiDAR ∈ R𝐻×𝑊 ×𝐶 .

3.3. Cross-modal Interaction Transform (CIT)

Existing methods directly convert all sensory features to the shared
BEV representation, and then fuse them via arithmetic or splicing
perations to obtain multi-modal BEV features. However, despite being
n the same BEV space, LiDAR BEV features and camera BEV features
an still be semantically misaligned due to the significant modality gap,
eading to a misalignment problem. To address this issue, we propose a
ew and powerful Cross-Modal Interaction Transformer (CIT) module
o enhance one modality from another modality by the self-attention
echanism. Next, we describe in detail our proposed CIT module.
Concatenation Interaction Transformer. First, given the BEV fea-

ures from both camera ( 𝐅BEV
Camer a ∈ R𝐻×𝑊 ×𝐶 ) and LiDAR ( 𝐅BEV

LiDAR ∈
𝐻×𝑊 ×𝐶 ) sensors, the BEV tokens 𝐓BEV

Camer a ∈ R𝐻 𝑊 ×𝐶 and 𝐓BEV
LiDAR ∈

𝐻 𝑊 ×𝐶 are obtained by flattening each BEV feature and permuting
he order of the matrices. Second, we concatenate the tokens of each
odality and add a learnable positional embedding, which is a train-

ble parameter of dimension 2𝐻 𝑊 × 𝐶, to get the input BEV tokens
in ∈ R2𝐻 𝑊 ×𝐶 of the Transformer [51]. The positional embedding

enables the model to differentiate spatial information between different
tokens at training time. Third, the input token 𝐓in uses linear projec-
tions for computing a set of queries, keys and values ( 𝐐, 𝐊 and 𝐕
),

𝐐 = 𝐓in𝐖Q,𝐊 = 𝐓in𝐖K ,𝐕 = 𝐓in𝐖V, (1)

where 𝐖Q ∈ R𝐶×𝐷Q , 𝐖K ∈ R𝐶×𝐷K and 𝐖V ∈ R𝐶×𝐷V are weight
atrices. Moreover, 𝐷Q, 𝐷K and 𝐷V are equal in our Transformer,

i.e., 𝐷Q = 𝐷K = 𝐷V = 𝐶. Fourth, the self-attention layer uses the scaled
dot products between 𝐐 and 𝐊 to compute the attention weights and
then multiply by the values to infer the refined output 𝐙,

𝐙 = At t ent ion(𝐐,𝐊,𝐕) = sof t max

(
𝐐𝐊𝑇
√
𝐷k

)
𝐕, (2)

where 1√
𝐷k

is a scaling factor for preventing the softmax function
rom falling into a region with extremely small gradients when the
agnitude of dot products grows large. To encapsulate multiple com-
lex relationships from different representation subspaces at different
ositions, the multi-head attention mechanism is adopted,
�̂� = Mult iHead(𝐐,𝐊,𝐕) = Concat (𝐙1,… ,𝐙ℎ)𝐖O,

𝐙𝑖 = At t ent ion(𝐐𝐖Q
𝑖 ,𝐊𝐖K

𝑖 ,𝐕𝐖
V
𝑖 ), 𝑖 ∈ {1,… , ℎ}.

(3)

The subscript ℎ denotes the number of heads, and 𝐖O ∈ Rℎ⋅𝐶×𝐶

denotes the projected matrix of Concat (𝐙1,… ,𝐙ℎ). Finally, the trans-
former uses a non-linear transformation to calculate the output fea-
tures, 𝐓out which are of the same shape as the input features 𝐓in,

𝐓out = MLP(�̂�) + 𝐓in. (4)

The output 𝐓out are converted into �̂�BEV
Camer a and �̂�BEV

LiDAR for further feature
fusion Eq. (5) is given in Box I.

Remarks: The main idea behind our CIT module is to leverage the
self-attention mechanism to learn the binary relationships between
5

Fig. 4. Illustration of the Correlation Matrix 𝛼.

Camera and LiDAR modalities. More specifically, we utilize a corre-
lation matrix to weight each position in the input feature maps. This
can be formulated as shown in Eq. (5). In this formula, 𝛼𝑖,𝑗 represents
the correlation between the 𝑖th position and the 𝑗th position on the
feature maps. According to Eq. (5), four matrix blocks can be naturally
inferred when calculating the correlation matrix 𝛼. Two of these blocks
represent intra-modality correlation matrices (for Camera and LiDAR),
while the other two represent inter-modality correlation matrices, as
illustrated in Fig. 4. Thus, we utilize the correlation matrix to weight
each position of the input multi-modal BEV features. The CIT module
can then adaptively perform simultaneous intra-modality and inter-
modality information fusion, robustly capturing the complementary
information between BEV features of different modalities.

3.4. Dual Dynamic Fusion (DDF)

Despite the effectiveness of the cross-modal interaction transform
odule, we argue that how to design an effective cross-modal fu-

sion strategy to adaptively select valuable information from different
modalities for better feature fusion is still very important. Recently,
multi-modal BEV feature fusion methods [11,19] have received much
attention. It is a common approach to utilize concatenation followed by
convolution to combine features from multi-modal BEV feature inputs,
�̂�BEV
Camer a and �̂�BEV

LiDAR, resulting in the aggregated features 𝐅f used, as shown
in Fig. 5(a) Conv Fusion. Another common method is to use CNN to
convolve the BEV features of different modalities separately, and then
dd the convolutional features, as shown in Fig. 5(b) Add Fusion. As

Fig. 5(c) illustrates, the input of the Dynamic Fusion (DF) module is the
Conv Fusion output features, and then they are fused with learnable
static weights, inspired by Squeeze-and-Excitation mechanism [52].
To effectively select valuable information from different modalities,
we propose a Dual Dynamic Fusion (DDF) module for better feature
fusion and maximum performance gain. Next, we describe in detail our
proposed fusion designs.

Dual Dynamic Fusion. As shown in Fig. 5(d), our Dual Dynamic
Fusion (DDF) module takes two sets of features from the camera
BEV features and LiDAR BEV features as input. In order to generate

eaningful attention weights that can effectively select informative
features from both inputs, we first sum the features from both branches
efore performing the squeeze and excitation operations that generate
he attention weights. We can formulate this process as:( ( (

̂ BEV ̂ BEV
)))
𝐰 = 𝜎 𝛾 AvgPool 𝐅Camer a + 𝐅LiDAR , (6)
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, (5)

Box I.
Fig. 5. Three existing fusion strategies and our proposed Dual Dynamic Fusion (DDF) strategy.
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where 𝜎 and 𝛾 represent the sigmoid function and linear layers respec-
tively, AvgPool is the global average pooling operation, and 𝐰 denotes
the attention weights. We then multiply 𝐰 and 𝟏 − 𝐰 to both input
features before the summation so that the fusion process essentially acts
as a self-gating mechanism to adaptively select useful information from
ifferent BEV features:

𝐅f used = Adapt ive
(
Conv3×3

([
𝐰 ⋅ �̂�BEV

Camer a, (𝟏 − 𝐰) ⋅ �̂�BEV
LiDAR

]))
, (7)

where [⋅, ⋅] denotes the concatenation operation along the channel
dimension. ⋅ is element-wise multiplication. Conv3×3 fuses the channel
and spatial information with a 3 × 3 convolution layer to reduce the
channel dimension of concatenated feature to 𝐶. With input feature
̂ ∈ R𝐻×𝑊 ×𝐶 , the Adapt ive operation is formulated as:

Adapt ive(�̂�) = 𝜎
(
𝐖AvgPool(�̂�)

)
⋅ �̂�, (8)

where 𝐖 denotes linear transform matrix (e.g., 1 × 1 convolution) and
𝜎 denotes sigmoid function. Therefore, the DDF module can adaptively
select valuable information from two modalities for better feature
fusion. The output fused feature 𝐅f used will be used for map construction
task, with the decoder and prediction heads.

Remarks: DF only performs channel-wise fusion, while DDF first
conducts spatial fusion and then channel-wise fusion. DDF enhances
DF by incorporating global average pooling, utilizing global weights
to reduce information loss. In DDF module, the AvgPool in Eq. (6) is
performed in the spatial domain with an input dimension of 𝑊 ×𝐻 ×𝐶
and an output of 𝐶; The AvgPool in Eq. (8) is performed in the channel
domain with an input of 𝑊 ×𝐻 × 𝐶 and an output of 𝑊 ×𝐻 .

3.5. Map-task heads

We apply specific heads for different map tasks to the fused BEV
eatures. We show two examples: HD map construction and BEV map
egmentation.
HD map construction head. HD map constructors formulate this

task as predicting a collection of vectorized static map elements in
6

b

bird’s eye view (BEV), i.e., pedestrian crossings, lane dividers, road
boundaries. We follow MapTR [3] to train the map head with the clas-
sification loss [53], the point2point loss [54], and the edge direction
oss [3].
BEV map segmentation head. Different map categories may over-

lap (e.g., crosswalk is a subset of drivable space). Therefore, we for-
ulate this problem as multiple binary semantic segmentation, one for

each class. We follow BEVFusion [11] to train the segmentation head
with the standard focal loss [53].

4. Experiments

4.1. Dataset

NuScenes Datasets. We evaluate our method on the widely-used
hallenging nuScenes [55] dataset following the standard settings of

previous methods [3,11]. The nuScenes dataset contains 1000 se-
quences of recordings collected by autonomous driving cars. Each
sample is annotated at 2 Hz and contains 6 camera images covering
360◦ horizontal FOV of the ego-vehicle. For the HD map construction
task, we following MapTR [3] and three kinds of map elements are
chosen for fair evaluation — pedestrian crossing, lane divider, and
road boundary. Moreover, for the BEV map segmentation task, we
following BEVFusion [11], we predict six semantic classes: drivable
anes, pedestrian crossings, walkways, stop lines, carparks, and lane
ividers.
Argoverse2 Dataset. There are 1000 logs in the Argoverse2 dataset

[56]. Each log contains 15 s of 20 Hz RGB images from 7 cameras,
10 Hz LiDAR sweeps, and a 3D vectorized map. The train, validation,
and test sets contain 700, 150, and 150 logs, respectively. For both HD
map construction and BEV map segmentation tasks, we select three map
lements for fair evaluation: pedestrian crossing, lane divider, and road
oundary.
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Table 1
Comparisons with state-of-the-art methods on nuScenes val set for the HD map construction task. We compare with existing
methods from literature, where the numbers are taken from MapTR [3]. We also provide information on the backbones,
epochs and input modalities in the table. Our proposed MapFusion outperforms all existing approaches in both single-class
APs and the overall mAP by a significant margin.

Method Modality Backbone Epochs AP𝑝𝑒𝑑 AP𝑑 𝑖𝑣𝑖𝑑 𝑒𝑟 AP𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦 mAP
HDMapNet [1] C Efficient-B0 30 14.4 21.7 33.0 23.0
HDMapNet [1] L PointPillars 30 10.4 24.1 37.9 24.1
HDMapNet [1] C & L Efficient-B0 & PointPillars 30 16.3 29.6 46.7 31.0

VectorMapNet [2] C ResNet-50 110 36.1 47.3 39.3 40.9
VectorMapNet [2] L PointPillars 110 25.7 37.6 38.6 34.0
VectorMapNet [2] C & L ResNet-50 & PointPillars 110 37.6 50.5 47.5 45.2

MapTR [3] C ResNet-50 24 46.3 51.5 53.1 50.3
MapTR [3] L SECOND 24 48.5 53.7 64.7 55.6
MapTR [3] C & L ResNet-50 & SECOND 24 55.9 62.3 69.3 62.5

MapFusion (Ours) C & L ResNet-50 & SECOND 24 61.6 64.4 72.5 66.1+3.6
u
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4.2. Evaluation metrics

HD map construction task. We adopt the evaluation metrics con-
sistent with previous works [1–3], where average precision (AP) is
used to evaluate the map construction quality and Chamfer distance
𝐷Chamfer determines the matching between predictions and ground
truth. We calculate the AP𝜏 under several 𝐷Chamfer thresholds (𝜏 ∈ 𝑇 =
{0.5 m, 1.0 m, 1.5 m}), and then average across all thresholds as the final
mean AP (mAP) metric,
𝑚𝐴𝑃 = 1

|𝑇 |
∑
𝜏∈𝑇

AP𝜏 . (9)

The perception ranges are [−15.0 m, 15.0 m]∕[−30.0 m, 30.0 m] for X/Y-
axes.

BEV map segmentation task. For the BEV map segmentation task,
ur primary evaluation metric is the mean Intersection over Union
mIoU). Due to potential overlaps between classes, we apply binary

segmentation separately to each class and choose the highest IoU over
different thresholds. We then average these values over all semantic
classes to produce the mIoU. This evaluation protocol was proposed in

EVFusion [11].

4.3. Experimental setting

MapFusion is trained with 4 NVIDIA RTX A6000 GPUs. For the
HD map construction task, we build upon MapTR [3] as the base-
ine. Specifically, we adopt ResNet50 [57] and SECOND [50] as the

backbone and employ GKT [30] as the default 2D-to-BEV module.
raining losses include classification loss, point2point loss, and edge
irection loss. with weights of 2.0, 5.0, and 0.005, respectively. The
odel is trained for 24 and 6 epochs on the nuScenes and Argoverse2
atasets respectively. All the data pre-processing steps for both datasets
ollow MapTR [3]. We set the mini-batch size to 16, and use a step-
ecayed learning rate with an initial value of 4𝑒−3. For the BEV map
egmentation task, we use BEVFusion [11] as our baseline and train

our networks within the mmdetection3d framework [58]. Specifically,
we adopt Swin-T [31] and VoxelNet [50] as the backbone, and utilize
SS [4] as the default 2D-to-BEV module. The model is trained for 20
nd 6 epochs on the nuScenes and Argoverse2 datasets, respectively.

The baseline is trained using the hyperparameters reported in [11],
following a learning schedule of 20 epochs with a cyclic learning rate,
starting for 1𝑒−4 and performing a single cycle with target ratios 10,
1𝑒−4 and a step of 0.4 For the CIT module described in Section 3.3
of the paper, we added this module before the fuser operation in the
baseline model. To implement the cross-modal interaction, we first
btain BEV tokens by flattening each BEV feature and permuting the

order of the matrix. Then, we concatenate the tokens of each modality
and add a learnable positional embedding. This step is followed by a

ulti-head self-attention block as described in [51], containing 8 heads
nd an embedding dimension of 256. For the DDF module described in
ection 3.4 of the paper, we replace the naive convolutional fuser with
he DDF module in the baseline model.
7

4.4. Comparison with the state-of-the-arts

4.4.1. HD map construction task
We compare MapFusion with state-of-the-art HD map construction

methods on nuScenes and Argoverse2 datasets. Our proposed MapFu-
sion outperforms all existing approaches in both single-class APs and
the overall mAP by a significant margin.

Experimental Settings. We adopt average precision (AP) to eval-
ate the map construction quality. Chamfer distance 𝐷𝐶 ℎ𝑎𝑚𝑓 𝑒𝑟 is used
o determine whether the prediction and GT are matched or not. We
alculate the 𝐴𝑃𝜏 under several 𝐷𝐶 ℎ𝑎𝑚𝑓 𝑒𝑟 thresholds (𝜏 ∈ 𝑇 , 𝑇 =
0.5, 1.0, 1.5}, unit is meter), and then average across all thresholds as
he final AP metric. The resolution of source images is 1600 × 900. During
he training phase, we resize the source images using a ratio of 0.5.
oreover, we set the maximum number of map elements in one frame,

he number of points in one map element, the size of each BEV grid,
nd the number of transformer decoder layers to 100, 20, 0.75 m, and 2,
espectively. We follow the experimental settings of existing methods
rom MapTR [3].
Experimental Results. With the same settings and data partition,

we compare the proposed MapFusion method with several state-of-the-
art methods, i.e., HDMapNet [1], VectorMapNet [2] and MapTR [3].
Tables 1 and 2 show the overall performance of MapFusion and all
the baselines on nuScenes and Argoverse2 datasets, respectively. Note
that re-implementation is needed because the reference methods do
ot report results on Argoverse2 data set, which has different in-
ut data format from nuScenes. The experimental results reveal a

number of interesting points: (1) The performance of multi-modal
methods are obviously better than that of single-modal methods, which
proves the significance of utilizing complementary cues from cam-
ra and LiDAR to improve the HD map construction performance.
2) In the multi-modality setting, the proposed MapFusion approach
chieves a 3.6% absolute improvement in mAP over the previous state-
f-the-art MapTR [3] on the nuScenes dataset. Similarly, it shows
 4.1% absolute improvement in mAP compared to MapTR [3] on
he Argoverse2 dataset. This advantage arises from the limitations of

the three compared HD map construction methods—HDMapNet [1],
VectorMapNet [2], and MapTR [3]—which rely on straightforward
channel concatenation and convolution for multi-modal feature fusion,
as shown in Fig. 5(a) (Conv Fusion). These methods neglect modality
interaction and employ overly simplistic fusion strategies, resulting in
misalignment and information loss.

In a nutshell, MapFusion shows significant superiority over other
ulti-modal methods, indicating the benefit of cross-modal interaction

transform (CIT) module and dual dynamic fusion (DDF) module. This
is due to the fact that the CIT module enables the two feature spaces to
interact with each other and enhances feature representation through a
self-attention mechanism, while the DDF module automatically selects
valuable information from different modalities and can make full use of

the inherent complementary information between different modalities.
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Table 2
Results of the HD map construction task on the Argoverse2 dataset.

Method Modality Backbone Epochs AP𝑝𝑒𝑑 AP𝑑 𝑖𝑣𝑖𝑑 𝑒𝑟 AP𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦 mAP

HDMapNet [1] C Efficient-B0 30 13.1 5.70 37.6 18.8
VectorMapNet [2] C ResNet-50 110 38.3 36.1 39.2 37.9

MapTRa [3] C ResNet-50 6 58.7 59.3 60.3 59.4
MapTRa [3] C & L ResNet-50 & SECOND 6 65.1 61.6 75.1 67.3

MapFusion (Ours) C & L ResNet-50 & SECOND 6 69.4 65.8 78.9 71.4+4.1
a Denotes our re-implementation following the setting in the paper.
Table 3
Results of the BEV map segmentation task on the nuScenes dataset. We compare with existing methods from literature, where the numbers are taken from
BEVFusion [11]. We also provide information on the backbones and input modalities in the table. MapFusion outperforms the state-of-the-art multi-sensor
fusion methods and achieves consistent improvements across different categories. Note that, we use BEVFusion [11] as the baseline model.

Method Modality Backbone Drivable Ped. Cross. Walkway Stop line Carpark Divider mIoU

OFT [37] C ResNet18 74.0 35.3 45.9 27.5 35.9 33.9 42.1
LSS [4] C ResNet18 75.4 38.8 46.3 30.3 39.1 36.5 44.4

CVT [6] C EfficientNet-B4 74.3 36.8 39.9 25.8 35.0 29.4 40.2
M2BEV [12] C ResNet101 77.2 % % % % 40.5 %

BEVFusion [11] C Swin-T 81.7 54.8 58.4 47.4 50.7 46.4 56.6
X-Align [18] C Swin-T 82.4 55.6 59.3 49.6 53.8 47.4 58.0

PointPillars [14] L VoxelNet 72.0 43.1 53.1 29.7 27.7 37.5 43.8
CenterPoint [15] L VoxelNet 75.6 48.4 57.5 36.5 31.7 41.9 48.6

PointPainting [16] C & L ResNet-101 & PointPillars 75.9 48.5 57.1 36.9 34.5 41.9 49.1
MVP [17] C & L ResNet-101 & VoxelNet 76.1 48.7 57.0 36.9 33.0 42.2 49.0

BEVFusion [11] C & L Swin-T & VoxelNet 85.5 60.5 67.6 52.0 57.0 53.7 62.7
X-Align [18] C & L Swin-T & VoxelNet 86.8 65.2 70.0 58.3 57.1 58.2 65.7

MapFusion (Ours) C & L Swin-T & VoxelNet 88.9 69.6 74.0 63.0 56.5 61.5 68.9+6.2
Table 4
Results of the BEV map segmentation task on the Argoverse2 dataset.

Method Modality Backbone Drivable 𝑃 𝑒𝑑 .𝐶 𝑟𝑜𝑠𝑠. Divider mIoU

BEVFusiona [11] C & L Swin-T & VoxelNet 78.1 30.7 46.3 51.7
MapFusion (Ours) C & L Swin-T & VoxelNet 83.5 37.4 53.7 58.2+6.5

a Denotes our re-implementation following the setting in the paper.
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4.4.2. BEV map segmentation task
We further compare MapFusion with state-of-the-art BEV map seg-

entation models, where MapFusion outperforms the state-of-the-art
ulti-sensor fusion methods and achieves consistent improvements

cross different categories.
Experimental Settings. We report the Intersection-over-Union

(IoU) on 6 background classes (drivable space, pedestrian crossing,
alkway, stop line, car-parking area, and lane divider) on nuScenes

dataset and 3 background classes (drivable space, pedestrian crossing
and lane divider) on Argoverse2 dataset. The class-averaged mean
IoU as our evaluation metric. For each frame, we only perform the
evaluation in the [−50 m, 50 m] × [−50 m, 50 m] region around the
ego car following [11,16,17,19]. In MapFusion model, we use a single
model that jointly performs binary segmentation for all classes instead
of following the conventional approach to train a separate model for
each class. We follow the experimental results of existing methods from

EVFusion [11].
Experimental Results. With the same settings and data partition,

we compare the proposed MapFusion method with several state-of-the-
art methods, i.e., PointPainting [16], MVP [17], and BEVFusion [11].
Tables 3 and 4 show the overall performance of MapFusion and all the
baselines on nuScenes and Argoverse2 datasets, respectively. Similar to
HD map construction, we also re-implemented the experimental results
for the Argoverse2 dataset.

The experimental results reveal several interesting points: (1) In
the single-modality setting, camera-based models perform significantly
better than LiDAR-based models. This observation is the exact opposite
f results in 3D object detection task [11,19]. The main reason is that

the map construction task is a semantic-oriented task, which pays more
attention to the semantic information in the image. Therefore, the per-
formance of directly using the fusion method on the 3D object detection
task for the map task is not satisfactory. (2) In the multi-modality
8

i

setting, MapFusion outperforms existing state-of-the-art multi-sensor
fusion methods, consistently across various categories. This advantage
arises from the limitations of these methods: PointPainting [16] is
bject-centric, focusing solely on enhancing foreground LiDAR points,
hile MVP [17] is geometry-oriented, concentrating exclusively on
ensifying foreground 3D objects—neither effectively segments map
omponents. Furthermore, BEVFusion [11] and X-Align [18] neglect

modality interactions and rely on overly simplistic fusion strategies
see Fig. 5(a) Conv Fusion and Fig. 5(c) Dynamic Fusion), resulting

in misalignment and information loss. Our proposed MapFusion ap-
proach achieves a 6.2% absolute improvement in mean Intersection
over Union (mIoU) compared to the previous state-of-the-art BEVFu-
ion [11] on the nuScenes dataset, and a 6.5% absolute improvement
n the Argoverse2 dataset. Notably, we re-implemented the BEVFusion

method following the original settings outlined in their paper. Overall,
apFusion consistently enhances the performance of existing fusion
ethods on both the nuScenes and Argoverse2 datasets, demonstrating

he effectiveness of our proposed CIT and DDF components.

4.5. Ablation studies

4.5.1. Contribution of each component
To systematically evaluate the effectiveness of each module of our

proposed MapFusion, we train the model using different components
and show the experimental results of the HD map construction task and
BEV map segmentation task in Tables 5 and 6 respectively. In the main
blation study, we design the following model variants: (1) MapFusion
Baseline) : we train the model without the cross-modal interaction

transform module and dual dynamic fusion module. (2) MapFusion
w/ DDF) : we train the model with the dual dynamic fusion module.
3) MapFusion (w/ CIT) : we train the model with the cross-modal
nteraction transform module. (4) MapFusion (full) : we train the model
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Table 5
An ablation study of the proposed MapFusion components is performed on the nuScenes dataset HD map
construction task. ‘‘DDF’’ and ‘‘CIT’’ respectively denote Dual Dynamic Fusion module and Cross-modal Interaction
Transform module. We show the effects of our proposed modules.
DDF CIT Modality Backbone Epochs AP𝑝𝑒𝑑 AP𝑑 𝑖𝑣𝑖𝑑 𝑒𝑟 AP𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦 mAP

% % C & L ResNet-50 & SECOND 24 55.9 62.3 69.3 62.5
" % C & L ResNet-50 & SECOND 24 58.4 64.1 72.5 65.0+2.5
% " C & L ResNet-50 & SECOND 24 60.2 64.3 72.1 65.5+3.0
" " C & L ResNet-50 & SECOND 24 61.6 64.4 72.5 66.1+3.6
Table 6
An ablation study of the proposed MapFusion components is performed on the nuScenes dataset BEV map segmentation task.

DDF CIT Modality Backbone Drivable Ped. Cross. Walkway Stop line Carpark Divider mIoU

% % C & L ResNet-50 & VoxelNet 85.5 60.5 67.6 52.0 57.0 53.7 62.7
" % C & L ResNet-50 & VoxelNet 86.2 62.2 68.9 54.4 56.4 56.0 64.1+1.4
% " C & L ResNet-50 & VoxelNet 88.8 68.3 73.6 62.6 56.0 60.5 68.3+5.6
" " C & L ResNet-50 & VoxelNet 88.9 69.6 74.0 63.0 56.5 61.5 68.9+6.2
Fig. 6. Qualitative results on BEV map segmentation task. We present a sample scene from nuScenes: (a) six camera inputs, (b) LiDAR scan, (c) ground-truth BEV map segmentation
ap, (d) baseline BEV segmentation map (BEVFusion [11]), (e) BEV segmentation map of only using CIT module, and (f) BEV segmentation map of MapFusion (full).
m
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w

with the cross-modal interaction transform module and dual dynamic
fusion module.

The experimental results reveal some interesting findings: (1) The
esults of both MapFusion (w/ DDF) and MapFusion (w/ CIT) are
ignificantly better than the MapFusion (Baseline), verifying the effec-
iveness of CIT and DDF components for improving multi-modal BEV
ap construction. Compared with the baseline model, DDF and CIT

modules achieve 2.5% and 3.0% absolute improvements respectively
n HD map construction task, demonstrating the superiority of our
pproach. Similarly, compared with the baseline model, DDF and CIT
odules achieve 1.4% and 5.6% absolute improvements respectively

n BEV map segmentation task. (2) The results of MapFusion (w/ DDF)
nd MapFusion (w/ CIT) are inferior to the MapFusion (full), verifying
he effectiveness of using both CIT and DDF simultaneously. MapFu-
ion (full) achieves 3.6% and 6.2% absolute improvements on the HD
ap construction and semantic map construction tasks, respectively,
emonstrating the superiority of our method.

These experimental results demonstrate that the CIT module en-
bles the camera and LiDAR BEV space to interact with each other
o enhance feature representation through the cross-attention mecha-
ism. Moreover, it is verified that the DDF module can automatically
elect valuable information from different modalities, thereby making
ull use of the inherent complementary information between different

modalities.

4.5.2. Analysis on different fusion methods
To systematically evaluate the effectiveness of the dual dynamic fu-

sion (DDF) method, we train the model using different fusion methods
9

t

detailed in Section 3.4. Tables 7 and 8 show the experimental results
on the HD map construction task and BEV map segmentation task
using different fusion methods, respectively. For instance, the proposed
DDF method achieves 2.5% absolute improvements compared with
Baseline model (Conv. Fusion) method on HD map construction task.
Similarly, DDF method achieves 1.4% absolute improvement compared
with Baseline model (Conv. Fusion) on BEV map segmentation task.
Experimental results show that the DDF module plays a vital role in

ulti-modal BEV feature fusion and can automatically select valuable
nformation from different modalities for better feature fusion.

4.5.3. Compatibility with other HD map construction methods
We show MapFusion is compatibility with other HD Map Construc-

tion methods, i.e., HDMapNet [1], VectorMapNet [2], and MapTR [3].
Besides adding MapFusion, we do not modify their original training
settings. For all experiments, we report the result of the nuScenes
val set. As shown in Table 9, simply adding MapFusion on top of
these strong baselines consistently improves state-of-the-art perfor-
mance. MapFusion demonstrates a significant accuracy boost (abso-
lute): HDMapNet(+7.6%), VectorMapNet (+5.5%), and MapTR
(+3.6%). This shows the versatility of MapFusion as a multi-modal BEV
feature fusion method.

4.5.4. Accuracy-computation analysis
In Fig. 7, we report the accuracy-computation trade-off by utilizing

our proposed CIT module (See Section 3.3) and different fusion strate-
gies (See Section 3.4). It can be seen that when using the CIT module,

e achieve the highest accuracy improvement at a higher computa-
ional cost, while the DDF module introduces less additional cost but



Information Fusion 119 (2025) 103018X. Hao et al.

s

Table 7
Performance comparison of different fusion strategies on HD map construction task. Our proposed dual dynamic fusion
strategy outperforms all existing approaches by a significant margin.

Method Modality Backbone Epochs AP𝑝𝑒𝑑 AP𝑑 𝑖𝑣𝑖𝑑 𝑒𝑟 AP𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦 mAP

Baseline(Conv. Fusion) C & L ResNet-50 & SECOND 24 55.9 62.3 69.3 62.5
Add fusion C & L ResNet-50 & SECOND 24 61.1 60.3 71.8 64.4+1.9

Dynamic Fusion C & L ResNet-50 & SECOND 24 58.4 63.1 71.5 64.3+1.8
Dual Dynamic Fusion C & L ResNet-50 & SECOND 24 58.4 64.1 72.5 65.0+2.5
Table 8
Performance comparison of different fusion strategies on BEV map segmentation task.

Method Modality Backbone Drivable Ped. Cross. Walkway Stop line Carpark Divider mIoU

Baseline(Conv. Fusion) C&L ResNet-50 & VoxelNet 85.5 60.5 67.6 52.0 57.0 53.7 62.7
Add fusion C&L ResNet-50 & VoxelNet 85.4 60.6 67.8 52.3 57.5 53.9 62.9+0.2

Dynamic fusion C&L ResNet-50 & VoxelNet 86.1 62.5 68.7 53.9 54.7 55.6 63.6+0.9
Dual dynamic fusion C&L ResNet-50 & VoxelNet 86.2 62.2 68.9 54.4 56.4 56.0 64.1+1.4
Table 9
Compatibility to other HD map construction methods. Adding MapFusion leads to consistent performance boost on nuScenes val set in terms of
mAP.

Method Venue Modality Backbone Epochs AP𝑝𝑒𝑑 AP𝑑 𝑖𝑣𝑖𝑑 𝑒𝑟 AP𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦 mAP

HDMapNeta [1] ICRA 22 C & L Efficient-B0 & PointPillars 30 13.3 26.9 44.3 28.2
HDMapNet + MapFusion − C & L Efficient-B0 & PointPillars 30 21.1 34.2 52.1 35.8+7.6

VectorMapNeta [2] ICML 23 C & L ResNet-50 & PointPillars 110 35.8 48.2 45.3 43.1
VectorMapNet + MapFusion − C & L ResNet-50 & PointPillars 110 41.1 53.7 50.9 48.6+5.5

MapTR [3] ICLR 23 C & L ResNet-50 & SECOND 24 55.9 62.3 69.3 62.5
MapTR + MapFusion − C & L ResNet-50 & SECOND 24 61.6 64.4 72.5 66.1+3.6

a Denotes our re-implementation following the setting in the original papers.
Fig. 7. Accuracy-Computation Analysis. We report the accuracy-computation trade-off by utilizing our proposed cross-modal interaction transform module and different fusion
trategies.
B

t
g
m
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provides less performance gain. It can be seen that all our proposed
fusion modules achieve better trade-offs compared with the baselines.
Furthermore, we find that the CIT module significantly outperforms
existing BEV fusion strategies, which again verifies that the baseline
fusion using simple concatenation and convolutions does not provide
the suitable capacity for the model to align and aggregate multi-modal
features.

4.6. Visualization

t-SNE. We randomly choose 500 samples from the nuScenes valida-
tion dataset and show the t-SNE [59] visualizations of (a) Before CIT
10
module and (b) After CIT module in Fig. 8. Red/Blue denotes camera
EV feature/LiDAR BEV feature. As can be seen, Fig. 8(a) Before

CIT module shows that blue and red features are clearly separated,
indicating that although in the same space, camera BEV features and
LiDAR BEV features can still be misaligned to some extent due to
he inaccurate depth in the view transformer and the large modality
ap. Fig. 8(b) After the CIT module, the BEV features from different
odalities are aligned in a shared space, i.e., red and blue dots are close

fter the CIT module.
Feature map visualizations. In order to visually demonstrate the

effectiveness of the CIT module, we visualize the feature map before
and after the CIT module in Fig. 9. Before the CIT module, the BEV
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Fig. 8. The t-SNE visualizations of (a) Before CIT module and (b) After CIT module on HD map construction task. Red/Blue denotes camera BEV feature/LiDAR BEV feature. After
the CIT module, the BEV features from different modalities are aligned in a shared space, i.e, red and blue dots are close after the CIT module.
Fig. 9. Visualization of feature maps before and after the CIT module for the HD map construction task.
features of different modalities look quite different. While after the CIT
module, they look more similar, verifying mitigated modality misalign-
ment. We can also find that: (1) The camera feature map is enhanced,
as shown in the red circles of the left top and left bottom images,
making the feature representation more powerful; (2) Missing features
in the LiDAR feature map are recovered, as shown in the red circles
of the right top and right bottom images. In summary, the CIT module
integrates different modes of BEV features into a shared space, thereby
enhancing representation learning and overall model performance.

Qualitative Results. In Fig. 6, we present more sample scenes
from nuScenes on the BEV map segmentation task. Each scene con-
sists of 5 parts: (a) six surround camera inputs (b) LiDAR scan, (c)
ground-truth BEV segmentation map, (d) baseline BEV segmentation
(BEVFusion [11]), (e) BEV segmentation using CIT module, and (d) BEV
segmentation of MapFusion (full). In Fig. 10, we present qualitative
results on a sample scene from nuScenes on the HD map construc-
tion task, showing both LiDAR and camera inputs. We compare the
predicted vectorized HD map results of different models, including
HDMapNet [1], VectorMapNet [2], the baseline (MapTR [3]), MapFu-
sion (only using the CIT module), and the full MapFusion. We observe
that the baseline model prediction is highly erroneous. By using the CIT
module can already correct substantial errors in the baseline prediction,
and the full MapFusion model further improves accuracy. Qualitative
11
results demonstrate the advantages of the CIT module and the DDF
module on the multi-modal map construction task.

5. Conclusion

To tackle the multi-modal BEV feature fusion problem in multi-
modal map construction task, we propose a novel method named
MapFusion, which can take advantage of the complementary informa-
tion between BEV features of different modalities. Specifically, we first
propose Cross-modal Interaction Transform (CIT) module to enhance
one modality from another modality by the cross-attention mechanism.
Moreover, we propose a Dual Dynamic Fusion (DDF) module to adap-
tively select valuable information from two modalities for better feature
fusion. Extensive experiments on several benchmarks demonstrate the
superiority of our method. We also verified the effectiveness of the
MapFusion components via an extensive ablation study.

This paper provides a novel multi-modal BEV feature fusion method
MapFusion for optimal fusion of RGB and LiDAR information. As shown
in our experiments, our MapFusion brings consistent accuracy improve-
ments for two different types of map reconstruction tasks in different
datasets. Our MapFusion model can be simply integrated into existing
pipelines in plug-and-play manner. Besides the map reconstruction
task, we believe that MapFusion can also benefit other multi-modal
perception tasks, which we leave for future work.
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Fig. 10. Qualitative results on HD map task. We present a sample scene from nuScenes: (a) six camera inputs, (b) LiDAR scan, (c) ground-truth BEV vectorized HD map, (d)
HDMapNet [1], (e) VectorMapNet [2], (f) baseline BEV vectorized HD map (MapTR [3]), (g) BEV vectorized HD map of only using CIT module, and (h) BEV vectorized HD map
of MapFusion (full).
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