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ShareRobot

Place a cup onto a plate

1. Reach for the cup
2. Grasp the cup
3. Lift the cup
4. Move the cup towards the plate
5. Lower the cup onto the plate
6. Release the cup
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Long-term task planning.
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1_Q To reach the goal of 
<picking up an apple>, 
which task should be 
prioritized next?

1_A 
lift 
the 
apple

2_Q Is now a 
suitable time to 
carry out <lift 
the apple>?

2_A 
yes, 
it 
is

Figure 1. Overview of RoboBrain. RoboBrain consists of three key robotic capabilities: planning capability, affordance perception, and
trajectory prediction. RoboBrain outperforms previous MLLMs in robotics tasks. The bottom part shows the composition of RoboBrain’s
training data and provides a specific example of visual question answering from our proposed ShareRobot. Best viewed on screen.

Abstract

Recent advancements in Multimodal Large Language
Models (MLLMs) have shown remarkable capabilities
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across various multimodal contexts. However, their appli-
cation in robotic scenarios, particularly for long-horizon
manipulation tasks, reveals significant limitations. These
limitations arise from the current MLLMs lacking three
essential robotic brain capabilities: Planning Capabil-
ity, which involves decomposing complex manipulation in-
structions into manageable sub-tasks; Affordance Per-
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ception, the ability to recognize and interpret the affor-
dances of interactive objects; and Trajectory Prediction,
the foresight to anticipate the complete manipulation tra-
jectory necessary for successful execution. To enhance
the robotic brain’s core capabilities from abstract to con-
crete, we introduce ShareRobot, a high-quality heteroge-
neous dataset that labels multi-dimensional information
such as task planning, object affordance, and end-effector
trajectory. ShareRobot’s diversity and accuracy have been
meticulously refined by three human annotators. Build-
ing on this dataset, we developed RoboBrain, an MLLM-
based model that combines robotic and general multi-modal
data, utilizes a multi-stage training strategy, and incorpo-
rates long videos and high-resolution images to improve its
robotic manipulation capabilities. Extensive experiments
demonstrate that RoboBrain achieves state-of-the-art per-
formance across various robotic tasks, highlighting its po-
tential to advance robotic brain capabilities. Project web-
site: RoboBrain.

1. Introduction
Recent advancements in Multimodal Large Language Mod-
els (MLLMs) have significantly advanced the pursuit of Ar-
tificial General Intelligence (AGI). By leveraging extensive
multimodal datasets sourced from the internet and employ-
ing self-supervised learning techniques, MLLMs demon-
strate exceptional capabilities in visual perception and un-
derstanding human language instructions, excelling in tasks
such as visual question answering [3, 14, 15], image cap-
tioning [35, 37], and sentiment analysis [17]. Despite sig-
nificant progress in MLLMs, the exploration of their appli-
cation in robotics remains in its early stages, highlighting a
crucial area for further research and innovation.

Recent studies have examined the application of MLLMs
in robotics, focusing on planning and subgoal decompo-
sition [6, 25], action sequencing [8, 9], and replanning
and feedback [41, 46]. However, their effectiveness in
robotic scenarios—particularly for long-horizon manipula-
tion tasks—reveals significant limitations. These limita-
tions stem from the current MLLMs’ lack of three critical
robotic capabilities: planning, affordance perception, and
trajectory prediction, as illustrated in Fig. 1. For instance,
consider a robotic arm tasked with lifting a teapot and pour-
ing water into a cup. The MLLM should be capable of de-
composing this task into sub-tasks, such as “approach the
teapot and lift it”, “move the teapot until the spout is po-
sitioned over the cup”, and “tilt the teapot to pour”. For
each sub-task, such as “approach and grasp the teapot”,
the MLLM must utilize affordance perception to accurately
identify the graspable regions of the teapot. Additionally,
trajectory prediction is essential for determining the com-
plete path from the starting point to the graspable part of

the teapot. This challenge for existing MLLMs primarily
arises from the scarcity of large-scale, fine-grained datasets
specifically designed for robotic operation tasks.

To empower the RoboBrain’s core capabilities from ab-
stract to concrete, we first introduce ShareRobot, a large-
scale, fine-grained dataset specifically designed for robotic
operation tasks. Specifically, we label multi-dimensional
information such as task planning, object affordance, and
end-effector trajectory. Building upon ShareRobot, we
developed RoboBrain, an MLLM model based on the
LLaVA [40] architecture, aimed at enhancing the percep-
tion and planning capabilities of robots in complex tasks.
In the process of training RoboBrain, we meticulously de-
signed the ratio of robotic data to general multi-modal data,
implemented a multi-stage training strategy, and incorpo-
rated long videos and high-resolution images. This ap-
proach endowed RoboBrain with powerful visual informa-
tion perception capabilities in robotic scenarios, support-
ing historical frame memory and high-definition image in-
put, thereby further enhancing the ability in robotic manip-
ulation planning. Extensive experimental results demon-
strate that RoboBrain outperforms existing models across
multiple robotic benchmarks, including RoboVQA [60]
and OpenEQA [49], achieving state-of-the-art performance.
Additionally, it shows competitive results in trajectory and
affordance prediction accuracy. These findings validate the
effectiveness of the proposed dataset and framework in en-
hancing robotic brain capabilities. In summary, the main
contributions of this paper are as follows:
• We propose RoboBrain, a unified multimodal large lan-

guage model designed for robotic manipulation, which
facilitates more efficient task execution by transforming
abstract concepts into concrete actions.

• We meticulously designed the ratio of robotic data to gen-
eral multi-modal data, implemented a multi-stage train-
ing strategy, and incorporated long videos and high-
resolution images. This approach provided RoboBrain
with historical frame memory and high-resolution image
input, thereby further enhancing its capabilities in robotic
manipulation planning.

• We introduce ShareRobot, a high-quality heterogeneous
dataset that labels multi-dimensional information, includ-
ing task planning, object affordance, and end-effector tra-
jectory, effectively enhancing various robotic capabilities.

• Comprehensive experimental results demonstrate that
RoboBrain achieves state-of-the-art performance across
various embodied benchmarks, highlighting its potential
for real-world applications in robotics.

2. Related Work
MLLM for Robotic Manipulation Planning Existing
studies mostly utilize MLLMs primarily focus on under-
standing natural language and visual observation tasks [6–
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should be the next step to move forward?
A: <task n>

Q: You are towards <task summary>. After 
completing steps 1-<task 1>, ..., n-1-<task 
n-1>, what is the next immediate task? 
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Figure 2. The generation procession of our ShareRobot dataset. Our dataset labels multi-dimensional information, including task
planning, object affordance, and end-effector trajectories. The task planning is first annotated by atomic tasks and then augmented by
constructing question-answer pairs. The affordance and trajectory are labeled on the images according to the specific instructions.

8, 30], with fewer addressing the decomposition of high-
level task instructions into actionable steps. PaLM-E [19]
generates multimodal inputs by mapping real-world ob-
servations into the language embedding space. RT-H [6]
and Robomamba [42] generate reasoning results along with
robot actions obtained from an additional policy head.
However, while these models generate planning texts and
actions, they still lack adequate mechanisms for executing
complex atomic tasks, highlighting the need for enhanced
affordance perception and trajectory prediction.

Datasets for Manipulation Planning Early datasets for
Manipulation [11, 22, 31, 44, 62] mainly comprise anno-
tated images and videos that highlight fundamental hand-
object interactions, including grasping and pushing. Recent
advancements [18, 60] in robotic manipulation emphasize
multi-modal and cross-embodiment datasets for enhanced
generalization. Datasets such as RH20T [20], Bridge-
DataV2 [68], and DROID [28] enhance scene diversity,
broadening the range of manipulation scenarios. Notably,
RT-X [54] compiles data from 60 datasets across 22 em-
bodiments into the Open X-Embodiment (OXE) repository.
In this work, we extract high-quality data from OXE, de-
compose high-level descriptions into low-level planning in-
structions, and adapt these into a question-answer format to
enhance model training.

3. ShareRobot Dataset
To enhance the RoboBrain’s capability of planning, affor-
dance perception, and trajectory prediction, we develop
a dataset called ShareRobot–a large-scale, fine-grained
dataset specifically designed for robotic operation tasks.
The generation procession of our dataset is shown as Fig. 2
The details are described in the following sections.

3.1. Overview

ShareRobot is a comprehensive dataset, facilitates more ef-
ficient task execution by transforming abstract concepts into
concrete actions. The main features of the ShareRobot
dataset include:
• Fine-grained Unlike the Open X-Embodiment

dataset[53], which only offers generalized high-level task
descriptions, each data point in ShareRobot includes de-
tailed low-level planning instructions linked to individual
frames. This specificity enhances the model’s ability to
execute tasks accurately at the right moment.

• Multi-dimensional To enhance RoboBrain’s capabilities
from abstract to concrete, we label task planning, ob-
ject affordances, and end-effector trajectories, allowing
for greater flexibility and precision in task processing.

• High quality We establish rigorous criteria for selecting

3



(a) Source Data Distribution (b) Cross-embodiment Distribution (c) Statics of types of atomic tasks

Figure 3. The diversity of our ShareRobot dataset. Our dataset involves (a) 23 original datasets, (b) 12 embodiments and (c) 107 types
of atomic tasks. The distribution of the top 20 most frequent atomic actions within our ShareRobot dataset is presented in (c).

data from the Open-X-Embodiment dataset[53], focusing
on high resolution, accurate descriptions, successful task
execution, visible affordance, and clear motion trajecto-
ries. Based on these criteria, we validate 51,403 instances
to ensure high quality, forming the foundation for Robo-
Brain’s core capabilities.

• Large scale With 1,028,060 question-answer pairs,
ShareRobot is the largest open-source dataset for task
planning, affordance prediction, and trajectory prediction,
enabling deeper understanding of complex relationships
from abstract to concrete.

• Rich diversity In contrast to the RoboVQA[60] dataset’s
limited scenes, ShareRobot features 102 scenes across 12
embodiments and 107 types of atomic tasks, as shown
in Fig. 3. This diversity allows MLLMs to learn from
varied real-world contexts, enhancing robustness in com-
plex, multi-step planning.

• Easy scalability Our data generation pipeline is de-
signed for high scalability, facilitating expansion as new
robotic embodiments, task types, and environments de-
velop. This adaptability ensures the ShareRobot dataset
can support increasingly complex manipulation tasks.

3.2. Data Selection

Based on the Open X-embodiment dataset [53], we care-
fully selected 51,403 instances, mainly focusing on image
quality, description accuracy and success status. Our data
collection process adheres to the following principles:

• High-resolution image We eliminate videos lacking im-
ages or those with low resolution. Any video with a reso-
lution below 128 pixels is removed.

• Accurate description Videos without descriptions or
with vague descriptions are filtered out to avoid affecting
the planning capability of the model.

• Success status We discard videos conducting failed tasks,
as unsuccessful demonstrations affect the model’s learn-
ing.

• Long video length Videos with fewer than 30 frames are
excluded, as they contain only atomic tasks.

• Object not covered We remove any videos where the tar-
get object or end-effector is covered by other objects, as
our model has to accurately identify the positions of end-
effectors and the object’s affordance.

• Clear Trajectories We exclude the demonstrations with
unclear or incomplete trajectories, as trajectory recogni-
tion is one of our RoboBrain’s capabilities.

3.3. Data Labeling

Planning Labeling We extract 30 frames from each robotic
operation demonstration. We use these frames along with
their high-level descriptions to decompose them into low-
level planning instructions using Gemini [63]. Three anno-
tators then review and refine these instructions to ensure the
precision of labeling. The low-level planning data is for-
matted to align with the RoboVQA [60] structure for model
training, employing question templates for the 10 question
types in RoboVQA. This process transforms 51,403 low-
level planning entries into 1,028,060 question-answer pairs,
with annotators monitoring data generation to maintain the
dataset’s integrity.

Affordance Labeling We filter 8,511 images from the
dataset and annotate each with affordance areas. For each
30-frame demonstration, we label the affordance in the
first frame, corresponding to the contact regions between
the end-effectors and the objects. We identify the contact
frame, where the end-effectors first contact the object, and
label the ground truth bounding box in the first frame as
{l(x), l(y), r(x), r(y)}, where {l(x), l(y)} are the top left co-
ordinates and {r(x), r(y)} are the bottom right corner coor-
dinates.

Trajectory Labeling We annotate 8,511 images with
bounding boxes for the gripper, maintaining consistency
with the affordance bounding box format. Each end-
effector is labeled with three parts: the entire gripper, the
left finger, and the right finger. This data serves to calcu-
late trajectory positions and train a gripper detector. The
trajectory position is determined by averaging the bound-
ing boxes of the left and right fingers, allowing for efficient
labeling of additional data.
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Figure 4. The pipeline of our RoboBrain. The images, multiple images, and videos are sent into our model to pre-train a foundation
robotic brain. Besides, we fine-tune the RoboBrain via A-LoRA and T-LoRA to develop Affordance and Trajectory skills. In practical
applications, the model first generates detailed plans, and then splits it into sub-task descriptions to execute specific robotic tasks.

3.4. Data Statistics

We select 23 original datasets from the Open X-
embodiment dataset[53]. The distribution of the source
data is shown in the Fig. 3. The data involves 102 vari-
ous scenes (e.g. bedroom, laboratory, kitchen, office), and
covers 12 different robot bodies. According to statistics,
there are 132 types of atomic actions in this dataset, tasks
with higher word frequency are shown in Fig. 3 (c). The
5 most frequent atomic tasks are “pick”, “move”, “reach”,
“lift”, and “place”, which are frequent task types in real
robotic operation scenarios. This suggests that the distribu-
tion of our dataset is reasonable. Finally, we get 1,028,060
question-answer pairs for planning. For the planning QA
pairs dataset, we split 1 million QA pairs as the training
set and 2,050 QA pairs as the test set. For the affordance
dataset, we split 8000 images as the training set and 511
images as the test set. For the trajectory dataset, we allocate
8000 images for training and 511 images for testing.

4. RoboBrain Model
In this section, we provide an overview of RoboBrain. Our
goal is to enable the Multi-modal Large Language Model
(MLLM) to understand abstract instructions and explic-
itly output object affordance regions and potential oper-
ational trajectories, facilitating a transition from abstract
to concrete. We employ a multi-stage training strategy:

Phase 1 focuses on general OneVision (OV) training to de-
velop a foundational MLLM with strong understanding and
instruction-following abilities. Phase 2, the robotic training
phase, aims to empower the core capabilities of RoboBrain
from abstract to concrete.

4.1. Model Architecture

RoboBrain consists of three modules: the foundational
model for planning, the A-LoRA model for affordance per-
ception, and the T-LoRA model for trajectory prediction.
In practical applications, the model first generates detailed
plans, and then splits it into sub-task descriptions to exe-
cute affordance perception and trajectory prediction. The
pipeline of our RoboBrain is shown to Fig. 4.

Foundational Model for Planning We utilize LLaVA
as the foundational Model for RoboBrain, which consists
of three main modules: the Vision Encoder (ViT) g(·), the
Projectior h(·), and the Large Language Model (LLM) f(·).
Specifically, we employ SigLIP [74], a 2-layer MLP [39],
and Qwen2.5-7B-Instruct [64]. Given an image or video
Xv as visual input, ViT encodes it into visual features Zv =
g(Xv), which are then mapped to the semantic space of the
LLM through Projectior, resulting in a sequence of visual
tokens Hv = h(Zv). Finally, the LLM generates a textual
response in an autoregressive manner based on the human
language instruction Xt and Hv .
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Stage-1 Stage-1.5 Stage-2 Stage-3 Stage-4

Single-Image OneVision A-LoRA T-LoRA

Vi
si

on Resolution 384 Max 384×{2×2} Max 384×{6×6} Max 384×{6×6} Max 384×{6×6} Max 384×{6×6} Max 384×{6×6}

#Tokens 729 Max 729×5 Max 729×37 Max 729×37 Max 729×37 Max 729×37 Max 729×37

D
at

a Dataset LCS Image Image Image & Video Robotic Data Afford. Data Traj. Data
#Samples 558K 4M 3.2M 1.6M 3M 10K 400K

M
od

el Trainable Projector Full Model Full Model Full Model Full Model A-LoRA T-LoRA
#Tunable Parameters 17.0M 8.0B 8.0B 8.0B 8.0B 28.0M 28.0M

Tr
ai

ni
ng

Batch Size 8 2 1 1 1 4 4
LR: ψViT - 2 ×10−6 2 ×10−6 2 ×10−6 2 ×10−6 2 ×10−6 2 ×10−6

LR: {θProj.,ϕLLM,ϕLoRA} 1×10−3 1 ×10−5 1 ×10−5 1 ×10−5 1 ×10−5 1 ×10−5 1 ×10−5

Epoch 1 1 1 1 1 1 1

Table 1. Detailed configuration for each training stage of the RoboBrain.

A-LoRA Module for Affordance Perception The term
affordance in our work refers to the area where the human
hand makes contact with objects. During interactions, hu-
mans instinctively engage with various objects within spe-
cific regions. We utilize bounding boxes to represent affor-
dances. Formally, consider an image I consisting of multi-
ple objects with their affordances: Oi = {A0

i , A
1
i , ..., A

N
i },

where the ith object owns N affordances. The format of af-
fordance is defined as {l(x), l(y), r(x), r(y)}, and {l(x), l(y)}
represents the top left corner coordinates of affordance,
while {r(x), r(y)} is the bottom right corner coordinates.

T-LoRA Module for Trajectory Prediction The term
trajectory in our work refers to the concept of 2D visual
traces, as presented in [21]. We define trajectory waypoints
as a series of 2D coordinates representing the movement of
the end-effector or hand throughout the process. Formally,
at time step t, the trajectory waypoints can be represented
as Pt:N = {(xi, yi) | i = t, t + 1, . . . , N}, where (xi, yi)
denotes the i-th coordinate in the visual trace, and N repre-
sents the total number of time steps in the episode.

4.2. Training

Phase 1: General OV Training In Phase 1, we drew on the
state-of-the-art training data and strategies from LLaVA-
OneVision [34] to construct a foundational model with gen-
eral multi-modal understanding and visual instruction fol-
lowing capabilities. This lays the groundwork for enhanc-
ing the model’s robotic manipulation planning abilities in
Phase 2. Detailed information is provided in Tab. 1.

In Stage 1, we utilize the image-text data from the LCS-
558K dataset [10, 59] to train Projector, facilitating the

alignment of visual features Zv with the LLM semantic fea-
tures Hv . In Stage 1.5, we train the entire model using 4M
high-quality image-text data to enhance the model’s multi-
modal general knowledge understanding capabilities. In
Stage 2, we further train the entire model with 3.2M single-
image data and 1.6M image and video data from LLaVA-
OneVision-Data [34], aiming to enhance the instruction-
following abilities of RoboBrain and improve understand-
ing of high-resolution image and video.

Phase 2: Robotic Training In Phase 2, we build upon
the robust multi-modal foundational model developed in
Phase 1 to create a more powerful model for robotic manip-
ulation planning. Specifically, we aim for RoboBrain to un-
derstand complex, abstract instructions, support the percep-
tion of historical frame information and high-resolution im-
ages, and output object affordance regions while predicting
potential manipulation trajectories. This will facilitate the
transition from abstract to concrete in manipulation plan-
ning tasks. Detailed information is provided in Tab. 1.

In stage 3, we collected a dataset of 1.3M robotic data to
improve the model’s robotic manipulation planning capa-
bilities. Specifically, this data is sourced from RoboVQA-
800K [60], ScanView-318K including MMScan-224K [24,
47], 3RScan-43K[24, 67], ScanQA-25K [4, 24], SQA3d-
26K [24, 48], and the subset of ShareRobot-200K intro-
duced in this paper. These datasets contain a substantial
amount of scene-scanning image data, long video data, and
high-resolution data to support the model’s ability to per-
ceive diverse environments. Additionally, the fine-grained,
high-quality planning data within the ShareRobot dataset
further enhances the robotic manipulation planning capabil-
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(a)  OpenEQA Benchmark (b)  ShareRobot Benchmark (c)  RoboVQA Benchmark

Figure 5. The performance of our model RoboBrain on the OpenEQA, ShareRobot, and RoboVQA benchmarks. RoboBrain surpassed all
baseline models, achieving state-of-the-art results.

ities of RoboBrain. To mitigate the issue of catastrophic for-
getting [75], we selected a subset of high-quality image-text
data from Phase 1 about 1.7M to mix with the robotic data
collected in Stage 3 for training, tuning the entire model ac-
cordingly. In Stage 4, we further enhanced the model’s abil-
ity to perceive object affordances based on instructions and
predict manipulation trajectories, utilizing affordance and
trajectory data annotated in the ShareRobot dataset. This
was achieved by introducing LoRA [23] modules for train-
ing to realize fine-grained planning capabilities. For the
specific construction of training data and the training meth-
ods employed, please refer to the supplementary materials.

5. Experiment

5.1. Implementation Details

During the entire training phase, we employed the
Zero3 [58] distributed training strategy, conducting all ex-
periments on a cluster of servers, each equipped with
8×A800 GPUs. The training components for each stage,
including image resolution settings, batch size, epochs, and
learning rates, are provided in Tab. 1.

5.2. Evaluation Metrics

Planning Task We selected RoboVQA [60],
OpenEQA [49], and the test set of ShareRobot ex-
tracted from the proposed ShareRobot dataset as robotic
benchmarks for multi-dimensional assessment. For
RoboVQA, we adopt the BLEU1 to BLEU4 metrics [56]
used in RoboMamba [42] for evaluation. Additionally,
for OpenEQA and ShareRobot, we use GPT-4o [55] as
the evaluation tool, scoring based on the alignment or
similarity between model predictions and ground truth,
which serves as the final performance score for the model.

Trajectory Prediction We evaluate the similarity be-
tween ground truth and predicted trajectories, both rep-

resented as sequences of 2D waypoints normalized to
[0, 1000), following Qwen2-VL [70]. The evaluation uses
three metrics: Discrete Fréchet Distance (DFD) [21], Haus-
dorff Distance (HD), and Root Mean Square Error (RMSE).
DFD captures overall shape and temporal alignment, HD
identifies maximum deviation, and RMSE measures aver-
age pointwise error. Together, these metrics provide a com-
prehensive assessment of trajectory accuracy and similarity.

Affordance Prediction Here, we utilize the average pre-
cision (AP) to evaluate the affordance performance of our
model. AP metric summarizes the precision-recall affor-
dance curve, which plots the relationship between preci-
sion and recall at various threshold settings. It is calculated
across multiple IoU (Intersection over Union) thresholds to
obtain a more comprehensive evaluation.

5.3. Evaluation on Robot Brain Task

Evaluation on Planning Task We selected 6 powerful
MLLMs as our baselines for comparison, including both
open-source and closed-source models with different archi-
tectures. Specifically, these models include GPT-4V [2],
Claude3 [1], llava1.5 [40], LLaVA-OneVision-7b [34],
Qwen2-VL-7b [69] and RoboMamba [42]. Our specific ex-
perimental results are shown in Fig. 5. Our RoboBrain out-
performed all baseline models across three robotic bench-
marks. RoboBrain significantly outperformed all baseline
models on OpenEQA and ShareRobot, which can be at-
tributed to its robust capabilities in understanding robotic
tasks and perceiving long videos. Additionally, this pat-
tern was observed in other benchmarks as well, with Robo-
Brain consistently demonstrating superior performance on
RoboVQA, achieving a BLEU-4 score that exceeded that
of the second-place model by 18.75. This result highlights
its capability to decompose complex long-range task plan-
ning. Please refer to the supplementary materials for more
ablation studies due to space limitation.

Evaluation on Trajectory Prediction We compare sev-
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Figure 6. This visualization illustrates that RoboBrain can interpret human instructions and visual images to generate action plans and
assessments based on real-time image feedback. Furthermore, it predicts trajectories for each step and identifies corresponding affordances.

Table 2. Trajectory Prediction Results Comparison. Dis-
crete Fréchet Distance (DFD), Hausdorff Distance (HD), and Root
Mean Square Error (RMSE).

Method DFD ↓ HD ↓ RMSE ↓

RoboBrain (Base) 0.191 0.171 0.133
+ Start Points 0.176 0.157 0.117
+ Max Points 0.185 0.163 0.125
+ Spec Token 0.109 (42.9%↓) 0.010 (94.2%↓) 0.091 (31.6%↓)

eral variants of our model, and the results are in Tab. 2:
(1) Baseline, fine-tuned on trajectory-related VQA data;
(2) Start Points, which adds the 2D start coordinates of
the end-effector; (3) Max Points, limiting waypoints to 10
via uniform sampling; and (4) Spec Token & End Points,
which adds end-effector positions and special tokens to em-
phasize waypoints and start/goal points. Each variant builds
on the previous one, with the final model integrating all
components. Our most effective model integrates all de-
sign choices. As shown in the last row of Tab. 2, DFD, HD,
and RMSE decreased by 42.9%, 94.2%, and 31.6%, respec-
tively, compared to the baseline. We found that adding start
points corrected the translational offset between the gener-
ated trajectory and the end-effector.

Evaluation on Affordance Prediction Our results are
summarized in Tab. 3. We compare the Qwen2-VL-7B
and LLaVA-NeXT-7B models. Qwen2-VL [69] has a supe-
rior visual grounding ability and LLaVA-NeXT [36] owns
a high-resolution and strong vision tower. We test them all

Table 3. The comparison of affordance prediction. We utilize
AP as the metric, and test them on affordance test set.

Model AP ↑
LLaVA-NeXT-7B [40] 9.8 %
Qwen2-VL-7B [5] 12.5 %
RoboBrain (Ours) 27.1 % (14.6↑)

on the AGD20K affordance test set. Our RoboBrain outper-
forms significantly the other models. It surpasses Qwen2-
VL [69] by 14.6 AP, and LLaVA-NeXT by 17.3 AP. It vali-
dates our RoboBrain can understand the physical properties
of objects and provide the affordance accurately.

5.4. Visualization

In this section, we present visual examples of RoboBrain,
as shown in Fig 6. Given human language instructions and
visual images, RoboBrain can engage in multi-turn inter-
actions with humans, understanding and predicting future
steps. Additionally, it outputs more concrete trajectories
and affordances.

6. Conclusion
In this paper, we introduce ShareRobot, a high-quality
dataset that labels multi-dimensional information, including
task planning, object affordance, and end-effector trajec-
tory. We also present RoboBrain, an MLLM-based model
that integrates robotic and general multi-modal data, em-
ploys a multi-stage training strategy, and leverages long
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videos and high-resolution images to enhance robotic ma-
nipulation. Extensive experiments demonstrate that Robo-
Brain achieves state-of-the-art performance across various
robotic tasks, underscoring its potential to significantly ad-
vance robotic capabilities.
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Appendix

This supplementary material provides more details of the
proposed method and experiment results that are omitted
from the manuscript due to the page limit. Sec. A presents
additional details of the models and training strategies.
Sec. B presents details of training dataset. Sec. C com-
plements more experiment results and analysis. Sec. D
shows more visualization results to prove the effectiveness
of RoboBrain. Sec. E introduces more details about the con-
struction of ShareRobot dataset.

A. Details of Models and Training

Model Setting. RoboBrain is built upon the LLaVA [40]
framework and consists of three main components: the vi-
sual encoder, projector, and large language model (LLM).

For the visual encoder, we utilized the SigLIP [74]
model, specifically the siglip-so400m-patch14-384, which
is pre-trained on WebLi [14] at a resolution of 384x384.
The SigLIP model improves upon traditional CLIP [57] ar-
chitectures by employing a sigmoid loss function that op-
erates solely on image-text pairs, eliminating the need for
global normalization of pairwise similarities. This enhance-
ment allows for more efficient scaling of batch sizes while
maintaining performance, even at smaller scales. SigLIP
has 27 hidden layers and processes input images using
patches of size 14x14, resulting in 729 visual tokens per
image. The projector consists of a two-layer MLP [36] that
projects the visual tokens obtained from the visual encoder
to the dimensions of the text embeddings. For the LLM,
we adopted the Qwen2.5-7B-Instruct [64] model, which is
a state-of-the-art open-source LLM that is part of the latest
Qwen series [5]. It features 28 hidden layers and supports
long-context inputs of up to 128K tokens, providing multi-
lingual capabilities across more than 29 languages.

In Stage 4, we introduced LoRA [23] to train RoboBrain,
enabling it to acquire affordance perception and trajectory
prediction capabilities. LoRA is a technique that allows for
parameter-efficient fine-tuning of large models by adding
low-rank parameter matrices to existing layers. We incorpo-
rated LoRA modules with a rank of 64 into the feed-forward
network layers of both the Projector and the LLM, freezing
all parameters except those of the LoRA modules during
training.

Training Setting. In the main text of the paper, we em-
ployed a staged training strategy, with complete settings
presented in Tab. 4. We primarily referenced the training
strategy of LLaVA-Onevision [34], a state-of-the-art mul-
timodal large language model, and built upon this founda-
tion to expand the robotic training phase. During the entire
training phase, we conducted all experiments on a cluster of
servers, each equipped with 8×A800 GPUs.

Figure 7. The distribution of the entire training dataset.

B. Details of Training Dataset
In the main body of the paper, we emphasize the impor-
tance of the training data and the proportion of robotic data.
In this section, we will provide a detailed overview of the
training data and its sources. The distribution of the entire
training dataset is illustrated in Fig. 7.
• LCS-558K is a subset of the LAION/CC/SBU dataset

[10, 59], specifically designed as the LLaVA Visual In-
struct Pretrain [40] Dataset. This dataset has been care-
fully filtered to achieve a more balanced distribution of
concept coverage, ensuring diverse and representative vi-
sual content. The primary purpose of LCS-558K is to fa-
cilitate the alignment between the visual encoder and the
LLM, enabling the LLM to comprehend visual informa-
tion.

• Image-4M comprises 8 data sources, including 3 from
the LLaVA-Recap series [33]: BLIP558K, COCO118K,
and CC3M, as well as UReader [72], Instruct Azure
DC [33], Evol-Instruct [12], and SynthDog [29] We
utilized the download links provided by the LLaVA-
OneVision team for the data acquisition.

• SI-3.2M [34] consists of 3.2 million samples, carefully
curated to support multimodal learning. It includes sub-
sets from existing datasets such as Cambrian [65], Caul-
dron [33], and UReader [72], which were subjected to
cleaning and re-annotation to ensure data quality. Addi-
tionally, it incorporates single-image data from sources
like AI2D [27] and OKVQA [50], alongside a newly
compiled single-image collection designed to achieve a

Due to the unavailability of certain datasets, the actual data used
amounts to 3.1M.
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Table 4. Detailed configuration for each training stage of the RoboBrain.

Stage-1 Stage-1.5 Stage-2 Stage-3 Stage-4

Single-Image OneVision A-LoRA T-LoRA

Vi
si

on Resolution 384 Max 384×{2×2} Max 384×{6×6} Max 384×{6×6} Max 384×{6×6} Max 384×{6×6} Max 384×{6×6}

#Tokens 729 Max 729×5 Max 729×37 Max 729×37 Max 729×37 Max 729×37 Max 729×37

M
od

el Trainable Projector Full Model Full Model Full Model Full Model A-LoRA T-LoRA
#Tunable Parameters 17.0M 8.0B 8.0B 8.0B 8.0B 28.0M 28.0M

Tr
ai

ni
ng

Per-device Batch Size 8 2 1 1 1 4 4
Gradient Accumulation 1 2 2 2 2 2 2
LR: ψViT - 2 ×10−6 2 ×10−6 2 ×10−6 2 ×10−6 2 ×10−6 2 ×10−6

LR: {θProj.,ϕLLM,ϕLoRA} 1×10−3 1 ×10−5 1 ×10−5 1 ×10−5 1 ×10−5 1 ×10−5 1 ×10−5

Epoch 1 1 1 1 1 1 1
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Deepspeed Zero3 Zero3 Zero3 Zero3 Zero3 Zero2 Zero2
Weight Decay 0 0 0 0 0 0 0
Warmup Ratio 0.03 0.03 0.03 0.03 0.03 0.03 0.03
LR Schedule cosine cosine cosine cosine cosine cosine cosine
Projector Type mlp2x gelu mlp2x gelu mlp2x gelu mlp2x gelu mlp2x gelu mlp2x gelu mlp2x gelu
Vision Select Layer -2 -2 -2 -2 -2 -2 -2
Patch Merge Type spatial unpad spatial unpad spatial unpad spatial unpad spatial unpad spatial unpad spatial unpad
Frames Upbound - - - 32 32 32 32
Max Seq Length 8192 32768 32768 32768 32768 4096 4096
GPU Nums 16*8 16*8 20*8 20*8 22*8 4*8 4*8

balanced and diverse dataset.
• OV-1.6M [34] comprises 1.6 million samples, which

includes approximately 800K high-quality samples re-
sampled from earlier SI-3.2M datasets with a data replay
strategy, ensuring improved data reliability and relevance.
Additionally, the dataset incorporates M4-Instruct data to
enrich instructional learning tasks. A significant compo-
nent of OV-1.6M is its video data, which has been re-
leased alongside LLaVA-video data. The video subset
used in the dataset is specifically aligned with the pre-
vious annotation format, providing a diverse multimodal
resource for advancing vision-language learning.

• RoboVQA-800K [60] consists of realistic data gathered
from various user requests, utilizing different embodi-
ments including robots, humans, and humans equipped
with grasping tools. The dataset features 5,246 long-
horizon episodes and 92,948 medium-horizon episodes
of robotic tasks, with each episode accompanied by cor-
responding image and text prompt inputs. The primary
purpose of RoboVQA-800K is to enhance RoboBrain’s
reasoning capabilities in robotic-related scenarios.

• ScanView-318K totals 318K samples, which inte-
grates data from several high-quality sources, includ-
ing MMScan-224K [47], 3RScan-43K [67], ScanQA-
25K [4], and SQA3D-26K [48], each contributing unique
strengths. MMScan-224K provides multimodal scene
data with detailed annotations, such as object segmen-
tation and textual descriptions. 3RScan-43K offers 3D
reconstructions and semantic annotation. ScanQA-25K

Due to the vague descriptions and missing key information regarding
dataset filtering in the original paper, we ended up using 2.4M data.

includes question-answer pairs based on 3D scanned en-
vironments. SQA3D-26K focuses on spatial question an-
swering. Together, these datasets provide diverse scene-
scanning image data, long video sequences, and high-
resolution samples, equipping models with fine-grained
environmental perception and reasoning abilities.

C. Complementary Experiments
In this section, we present the complete experiments and
results that are omitted from the manuscript due to page
limitations. This includes an exploration of the impact of
incorporating ShareRobot on training, the effects of vary-
ing proportions of robotic data in the training dataset, and
more comprehensive results comparing RoboBrain with the
baselines on both general and robotic benchmarks.

Additionally, we explore the impact of different archi-
tectures and pre-trained VLMs, as well as different LLM
backbones on our experimental results. We also conduct
ablation studies at various stages to meticulously analyze
the contributions of each stage to overall performance.

C.1. More Results on General Benchmarks

To evaluate performance on general tasks in real-world sce-
narios, as is commonly done with MLLMs [2, 15, 36, 55,
69], we conducted experiments using a diverse set of im-
age benchmarks summarized in Table 5. We leveraged the
comprehensive evaluation toolkit, LMMs-Eval[76, 77], to
evaluate RoboBrain’s performance on general benchmarks.
These benchmarks are categorized into three classes:
• Chart, Diagram, and Document Understanding. As

key visual formats for structured OCR data, benchmarks
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Table 5. Performance comparison on multiple general benchmarks.

Dataset Split RoboBrain (Ours) GPT-4V [2] LLaVA-OV-7B [36] InternVL2-8B [15] Qwen2-VL-7B [69] GPT-4o [55]

A12D[27] test 82.03 78.2 81.4 83.8 - 94.2
ChartQA[51] test 80.48 78.5 80 83.3 83 85.7
DocVQA[52] test 88 88.4 87.5 91.6 94.5 92.8
TextVQA[61] val 75.85 - 71.07 77.4 84.3 -
MMMU[73] val 49 56.8 48.8 51.8 54.1 69.1
MMStar[13] test 61.23 57.1 61.7 61.5 60.7 63.9
OCRBench[43] - 677 656 697 794 845 805
RealWorldQA[71] test 68.89 61.4 66.3 64.4 70.1 58.6
SeedBench[32] image 71.03 49.9 75.4 76.2 - 76.2
MMbench[45] en-dev 81.52 81.3 83.2 - - 83.4
MMbench[45] en-test 80.44 75 80.8 81.7 83 -
MME[? ] test 2084 1926 1998 2210 2327 -

such as AI2D [27], ChartQA [51], DocVQA [52], and
OCRBench [43] were utilized. Open-source models like
InternVL2-8B [15] and LLAVA-OV-7B [36] have demon-
strated comparable performance to closed-source mod-
els such as GPT-4V [2]. For RoboBrain, despite being
optimized primarily for multidimensional robotic tasks,
it surpasses LLAVA-OV-7B [36] and GPT-4V [2] on
these benchmarks, achieving a significant improvement
in structured OCR tasks, with the only exceptions be-
ing DocVQA [52], where it performs slightly lower than
GPT-4V [2], and OCRBench [43], where it falls slightly
behind LLAVA-OV-7B [36].

• Visual Perception and Multi-domain Reasoning. This
category focuses on complex visual perception and mul-
tidisciplinary reasoning tasks. Benchmarks for vi-
sual perception include MMStar [13], MMBench [45],
and MME [? ], while reasoning benchmarks include
MMMU [73] and SeedBench [32]. RoboBrain demon-
strates comparable performance to GPT-4V [2] and
LLAVA-OV-7B [36] across multiple benchmarks.

• Real-world Understanding and Interaction. Evaluat-
ing MLLMs [2, 15, 36, 55, 69] as general-purpose assis-
tants in real-world settings is crucial, as these scenarios
extend beyond controlled environments. For this, the Re-
alworldQA [71] benchmark was utilized. Results indicate
that RoboBrain not only outperforms open-source models
like LLAVA-OV-7B [36] and InternVL2-8B [15], but also
exceeds closed-source models such as GPT-4V [2] and
GPT-4o [55], showcasing its extensive knowledge base
and strong generalization capabilities.

C.2. More Results on Robotic Benchmarks.

To evaluate RoboBrain’s performance on robotic capabil-
ities in real-world scenarios, we selected RoboVQA [60],
OpenEQA [49], and the test set of ShareRobot, extracted
from the proposed ShareRobot dataset, as robotic bench-

marks for multi-dimensional assessment, as shown in Ta-
ble 6. The chosen baselines include MLLMs such as GPT-
4V [2], LLaVA-OV-7B [36], and Qwen2-VL-7B [69], as
well as robotic models like RoboMamba [42]. Detailed de-
scriptions of the three selected robotic benchmarks and the
analysis of each results are provided below:

• RoboVQA [60] provides a robotics VQA benchmark and
a long-horizon planning benchmark with an interven-
tion mechanism on real robots. Specifically, this bench-
mark includes 18,248 video-text pairs designed from 100
long-horizon episodes for various robotic VQA tasks,
including planning, planning with context, planning re-
maining steps, future prediction, generative affordance,
past description, success (positive/negative), and discrim-
inative affordance (positive/negative). Similar to Robo-
Mamba [42], we utilized BLEU-1∼BLEU-4 to evaluate
the average performance across all tasks. According to
the evaluation results, our proposed model, RoboBrain,
outperforms all baselines, achieving approximately 30%
higher performance than the second-best model.

• OpenEQA [49] provides a robotics VQA benchmark
with over 1,600 high-quality human-generated questions
drawn from more than 180 real-world scenes, targeting
the task of Embodied Question Answering (EQA) for en-
vironment understanding. For fairness, we evaluated all
models using the prompt templates and the LLM-Score
metric provided by OpenEQA [49]. Based on the eval-
uation results, our proposed model, RoboBrain, outper-
forms GPT-4V [2] overall and achieves comparable per-
formance to other baselines. In the future, we plan to fur-
ther enhance RoboBrain’s spatial intelligence to improve
its generalization across scenes.

• ShareRobot (Eval) provides a cross-scene and cross-
embodiment robotics benchmark consisting of 2,050
VQA pairs, drawn from 102 diverse scenes (e.g., bed-
room, laboratory, kitchen, office) and covering 12 differ-
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Table 6. Performance comparison on RoboVQA, OpenEQA and ShareRobot Benchmarks.

Dataset Split / Metric RoboBrain (Ours) GPT-4V [2] LLaVA-OV-7B [36] RoboMamba [42] Qwen2-VL-7B [69]

RoboVQA[60]

BLEU1 72.05 32.23 38.12 54.9 33.22

BLEU2 65.35 26.51 33.56 44.2 26.11

BLEU3 59.39 24.65 31.76 39.5 20.98

BLEU4 55.05 23.94 30.97 36.3 17.37

OpenEQA[49]

OBJECT-STATE-RECOGNITION 70.4 63.2 72.02 - 72.06
OBJECT-RECOGNITION 49.54 43.4 51.73 - 61.91
FUNCTIONAL-REASONING 57.14 57.4 55.53 - 54.23

SPATIAL-UNDERSTANDING 46.46 33.6 48.98 - 50.39
ATTRIBUTE-RECOGNITION 66.7 57.2 75.52 - 73.88

WORLD-KNOWLEDGE 53.12 50.7 56.46 - 57.3
OBJECT-LOCALIZATION 47.45 42 45.25 - 47.29

ShareRobot (Eval)

DISCRIMINATIVE 99.02 - 57.9 - 76.47

FUTURE-PREDICTION 72.92 - 13.1 - 8.04

GENERATIVE 32.43 - 5.44 - 4.63

PAST-DESCRIPTION 37.07 - 4.4 - 13.65

PLANNING-REMAINING 71.29 - 24.5 - 7.56

PLANNING-TASK 52.43 - 25 - 36.34

PLANNING-WITH 91.95 - 44.25 - 45.12

SUCCESS 61.7 - 58.5 - 54.63

ent robot bodies. Similar to RoboVQA [60], we cate-
gorized various robotic VQA tasks into planning, plan-
ning with context, planning remaining steps, future pre-
diction, generative affordance, past description, success
(positive/negative), and discriminative affordance (posi-
tive/negative). Unlike RoboVQA benchmark [60], we uti-
lized GPT-4o [55] to score the evaluation results instead
of BLEU metrics for each task, aiming for more accu-
rate performance assessment. Based on the results, our
proposed model, RoboBrain, outperforms all baselines,
demonstrating its exceptional planning capabilities across
diverse scenes and embodiments.

C.3. Effectiveness of ShareRobot

In this subsection, we investigate the effectiveness of the
proposed ShareRobot dataset for training RoboBrain. We
maintain the ratio of robotic data to general data used in
the main body of the paper, approximately 4:6. Based on
the original data source proportions, we randomly sampled
200K samples, which include:
• Exp A consists of 40% robotic data, with 20% sourced

from ShareRobot and 20% from other robotic sources,
along with 60% general data.

• Exp B consists of 40% robotic data, excluding ShareR-
obot, with the same other robotic data resampled as in
Experiment A, resulting in a total of 40%. It also includes
60% general data, which is identical to that of Exp A.
We conducted a complete epoch for all the experiments

mentioned above. The results are presented in Tab 7.
As shown in the table, the inclusion of ShareRobot data
enhances the model’s performance compared to scenarios
without ShareRobot.

C.4. Effectiveness of Robot Data Proportion

In this subsection, we investigate the effectiveness of the
ratio of robotic data (including ShareRobot) to general data
used in training RoboBrain. We maintain a constant total
training dataset size of 200K while varying the sampling
proportions of robotic and general data. The configurations
are as follows:

• Exp C utilizes a ratio of 3:7, comprising 30% robotic data
and 70% general data.

• Exp D utilizes a ratio of 4:6, comprising 40% robotic data
and 60% general data, same to Exp A.

• Exp E utilizes a ratio of 5:5, with 50% robotic data and
50% general data.

• Exp F utilizes a ratio of 6:4, featuring 60% robotic data
and 40% general data.

• Exp G utilizes a ratio of 7:3, containing 70% robotic data
and 30% general data.

We conducted a complete epoch for all the experiments
mentioned above. The results are presented in Tab 7. As
shown in the table, a 4:6 ratio of robotic data represents a
good choice for training data, effectively balancing perfor-
mance on both the robotic and the general benchmark.
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Table 7. Experimental results for effectiveness of ShareRobot and different robot data proportion.

Exp. Name
General Data (%) Robotic Data (%) General Benchmarks Robotic Benchmarks

Average
OneVision ShareRobot Others Type-1 Type-2 Type-3 RoboVQA[60] OpenEQA[49] ShareRobot

EXP A 60% 20% 20% 62.44 71.98 70.33 48.29 58.74 63.11 62.48
EXP B 60% 0% 40% 62.36 71.38 66.01 49.20 57.96 27.03 55.66

EXP C 70% 15% 15% 62.73 72.19 68.10 45.96 56.59 61.73 61.22
EXP D 60% 20% 20% 62.44 71.98 70.33 48.29 58.74 63.11 62.48
EXP E 50% 25% 25% 62.28 71.25 66.54 49.34 58.76 63.35 61.92
EXP F 40% 30% 30% 62.39 71.61 68.37 49.22 56.24 64.57 62.07
EXP G 30% 35% 35% 62.69 71.92 69.54 47.74 55.72 65.22 62.14

Table 8. Additional Experimental Results. “SFT Data (G:R)”
indicates the ratio of training data for fine-tuning VLMs, where
“G” represents general VQA data and “R” denotes robot data (with
half being ShareRobot). The total dataset size is 1.47M.

Model SFT Data(G:R) RoboVQA ShareRobot MME MMMU

LLaVA-OV-7b 6:0 36.29 27.04 2001 49.65
6:4 43.63 54.66 1945 48.83

(a) Qwen2VL-7B 6:0 24.05 28.17 2313 52.10
6:4 58.94 58.86 2295 52.33

OpenVLA-7B 6:0 4.11 21.44 1681 35.07
6:4 54.79 60.56 1722 37.25

LLaVA1.5-Qwen 6:0 24.17 26.73 1720 44.28
6:4 49.01 43.41 1732 48.33

(b)
LLaVA1.5-LLaMA 6:0 21.40 25.06 1529 46.40

6:4 49.67 54.87 1722 43.41

LLaVA1.5-Vicuna 6:0 26.19 22.18 1668 30.09
6:4 50.40 51.42 1650 31.51

LLaVA1.5-Mistral 6:0 14.30 21.88 1602 23.91
6:4 36.29 57.47 1548 24.32

C.5. Different Architecture and Pre-trained VLMs

To validate the effectiveness of different architecture and
pre-trained VLMs and training data in the stage 3 training
setup, we selected LLaVA-OneVision-7B [34], OpenVLA-
7B [30], and Qwen2VL-7B [69], each representing a dis-
tinct architecture among VLMs, and conducted SFT using
the same proportion of training data described in the main
text. As shown in Tab. 8 (a), the results demonstrated that
incorporating ShareRobot can significant performance im-
provements. For unaligned VLMs like LLaVA 1.5 [38] and
OpenVLA, we first aligned the MLP using BLIP-558k [33];
other models were directly finetuned.

C.6. Different LLM Backbones

To demonstrate the effectiveness of different LLM back-
bones when finetuned on the ShareRobot dataset, we con-
ducted experiments using four distinct LLMs [5, 16, 26, 66].
These models were finetuned using the ShareRobot data,
and the experimental results are summarized in Tab. 8 (b).
The findings indicate that different LLMs benefit from the
ShareRobot data.

Table 9. Additional Evaluation Results.

Stage RoboVQA ShareRobot MME MMMU Affordance↑ Trajectory↓

S1.5 2.60 9.81 1406 46.00 0.00 1.00
S2-si 28.90 13.31 2110 50.76 3.11 1.00
S2-ov 31.81 34.84 2083 49.95 8.50 1.00

S3 62.96 65.05 2084 49.00 7.14 1.00
S4-A 62.96 65.05 2084 49.00 27.1 -
S4-T 62.96 65.05 2084 49.00 - 0.09

C.7. Ablation Studies of Different Stages

We present the evaluation results for each stage in Tab. 9.
The results demonstrate that staged training from stage 1
to stage 3 consistently and effectively improves the model’s
planning performance, while stage 4 enhances the model’s
affordance and trajectory capabilities.

D. More Qualitative Results
In this section, we provide additional visual results for plan-
ning, affordance perception, and trajectory prediction. This
includes the presentation of both positive and negative sam-
ples, as well as further analysis.

D.1. Visualization on Planning

Here, we present additional embodied planning for robotic
tasks generated by RoboBrain, as shown in Fig. 8. In this
figure, we demonstrate the planning results of RoboBrain
for four distinct robotic manipulation tasks: ”Water plants”,
”Put the pot in the drawer”, ”Cluster blocks of the same
color into different corners”, and ”Clean the desk”, where
the first three are categorized as good cases, and the last one
as a bad case. Additionally, the model provides a rationale
and detailed explanation for each step of the planning pro-
cess across all four cases.

From the first three planning cases, it is evident that
RoboBrain effectively utilizes environmental information
and the states of interactive objects—captured from first-
or third-person perspective images—to generate task plans
for various types of robotic manipulation tasks. Notably, in
the ”Cluster blocks of the same color into different corners”
task, RoboBrain not only analyzes the number of blocks of
each color on the table in Steps 1 and 2 but also provides
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detailed sub-steps in Step 3, i.e., ”Move the objects to form
clusters”. Specifically, it plans the movement of blocks
of four different colors to their designated locations: ”top
left corner”, ”top right corner”, ”bottom left corner”, and
”bottom right corner”. The exceptional task generalization
capability of RoboBrain in planning further validates the ef-
fectiveness of our training dataset—including the proposed
ShareRobot dataset—and the Multi-Phase training strategy.

We also present a bad case for RoboBrain, namely the
”Clean the desk” task. In this case, the first-person perspec-
tive image depicts a work desk spilled with coffee, where
the main objects of focus include a ”tissue box”, a ”tipped-
over coffee cup”, and the ”spilled coffee liquid”. The errors
in the planning results inferred by RoboBrain are summa-
rized as follows: (1) Object recognition error. The only
available object for wiping the desk in the image is a ”tis-
sue”, rather than a ”disinfectant wipe”. (2) Omission of
critical steps. Before wiping the desk, it is necessary to
extract a tissue from the tissue box. However, this step is
missing in RoboBrain’s planning. (3) Action decision de-
viation. In Step 2, i.e., ”Wipe down the desk with a disinfec-
tant wipe”, the detailed description states, ”Start from one
end of the desk and move to the other”. This implies that
RoboBrain fails to prioritize wiping the ”spilled coffee liq-
uid” specifically, focusing instead on cleaning ”the entire
desk”. The primary cause might be the similarity in color
between the desk and the spilled coffee, making it difficult
for the model to distinguish.

In our extensive testing, although a small number of un-
reasonable bad cases like the one described above were ob-
served, RoboBrain demonstrated robust planning capabil-
ities in the vast majority of cases. This provides a solid
foundation for executing long-horizon manipulation tasks.

D.2. Visualization on Affordance

Here, we present the visualizations of RoboBrain’s percep-
tion of affordance areas, as shown in Fig.9. The text below
each subfigure indicates the task instructions, while the red
bounding boxes represent the affordance areas predicted by
the RoboBrain model. The visualizations in the first three
rows demonstrate that our RoboBrain model can effectively
provide reasonable affordance areas based on human in-
structions and visual information. For example, given the
instruction “drink with the bottle”, RoboBrain can deter-
mine that the bottle cap is in a closed state, thus provid-
ing affordance information for the cap area. This highlights
RoboBrain’s strong understanding of abstract instructions.

We also present several failure cases, as illustrated in the
fourth row of Fig.9. These include misidentified objects,
interference from other objects in the scene, and instances
where no objects were recognized. These issues may stem
from the model’s limited ability to perceive and localize in
noisy environments.

D.3. Visualization on Trajectory

Here, we present additional visualizations generated by
RoboBrain using start points, as shown in Fig.10. In this fig-
ure, the red-to-purple gradient curves represent the ground
truth, while the green-to-blue gradient curves indicate the
predicted trajectories. For clarity, waypoints are omitted.
The first three rows demonstrate that, regardless of the com-
plexity of the end-effector trajectory, RoboBrain accurately
predicts 2D trajectories based on visual observations and
task instructions. These predictions closely align with the
structure of the ground truth and remain executable.

Additionally, RoboBrain’s predictions often capture the
essential features of the trajectories, leading to smoother
and potentially more efficient paths compared to the ground
truth. This improvement may stem from the inherent vari-
ability in the robot’s actual trajectories, which can include
redundant waypoints under similar manipulation scenarios.
By learning from a large, embodied dataset and utilizing the
reasoning capabilities of large language models, RoboBrain
is able to infer effective and optimized execution paths.

The visualizations in the third row further suggest that
RoboBrain avoids overfitting; it generalizes well across dif-
ferent scenarios, producing trajectories that are both exe-
cutable and reasonable.

We also present several failure cases, as shown in the
fourth row of Fig. 10. These include the robot’s end-effector
failing to accurately locate the cup, neglecting the articu-
lated nature of the fridge door while opening it, and not
accounting for the deformable properties of clothing during
folding. These examples highlight the need for improved
spatial perception, as well as the incorporation of object-
specific physical constraints and world knowledge to gener-
ate more feasible and realistic trajectories.

E. Details of ShareRobot Dataset
In the previous section, we introduced the process of col-
lecting and annotating our ShareRobot dataset. Here, we
will provide detailed prompts for data labeling and display
examples.

E.1. Prompts

The prompts used for data planning labeling are shown in
Fig.11.

E.2. High-level Descriptions Examples

In our ShareRobot dataset, there are 10,290 long-horizon
high-level descriptions. We provide the 50 most frequently
occurring ones below.
• Closing a drawer
• Opening a drawer
• Opening a cabinet door
• Dragging a strainer across a table
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• Picking up a bowl
• Inserting a three-pronged object into its matching slot
• Inserting a double-square object into its matching slot
• Opening a door
• Closing a cabinet door
• Inserting a star-shaped object into its corresponding slot
• Opening a laptop
• Inserting an oval object into its corresponding slot
• Picking up a ketchup bottle from a table
• Moving a banana from a plate to a table
• Closing a door
• Switching a light switch
• Inserting an arch-shaped object into its corresponding slot
• Inserting a square-circle object into its matching slot
• Dragging a strainer backwards
• Dragging a mug from left to right
• Dragging a mug forward
• Picking up a red object from a table
• Placing a ketchup bottle onto a plate
• Placing a bowl inside an oven
• Inserting a hexagonal object into its corresponding slot
• Closing a microwave door
• Moving a banana from a table to a plate
• Turning on a toaster
• Opening a microwave
• Closing an oven door
• Making tea
• Dragging a strainer forward
• Placing a bowl into an oven
• Picking up a banana and placing it in a mug
• Inserting an arch-shaped object into its matching slot
• Closing a tea container
• Inserting a green object into a designated slot
• Picking up a banana and placing it in a strainer
• Moving a cloth to the left side of a table
• Dragging a mug backwards
• Placing a bottle into a pot
• Dragging a strainer forwards
• Inserting a rectangular prism into its matching slot
• Opening a refrigerator
• Opening a tea container
• Opening a double door
• Inserting a cylinder into a matching hole
• Picking up a piece of toast
• Dragging a mug from left to right on a table
• Closing a refrigerator door

E.3. Low-level Instructions Examples

Our ShareRobot dataset contains 28,181 low-level instruc-
tions. The top 50 frequency occurrences are displayed be-
low.

• Grasp the ketchup bottle
• Reach for the ketchup bottle

• Grasp the banana
• Lift the ketchup bottle
• Lift the banana
• Reach for the strainer
• Reach for the banana
• Reach for the mug
• Grasp the mug
• Lift the pot
• Lift the bowl
• Pull the drawer open
• Reach for the bowl
• Reach for the pot
• Grasp the strainer
• Reach for the drawer handle
• Grasp the handle
• Lift the spoon
• Grasp the bowl
• Reach for the spoon
• Place the ketchup bottle on the table
• Release the banana
• Reach the drawer
• Place the banana on the table
• Lift the mug
• Reach the cabinet door
• Grasp the pot
• Grasp the strainer
• Grasp the drawer handle
• Release the mug
• Grasp the pot
• Grasp the spoon
• Place the mug down
• Move the banana towards the table
• Grasp the bowl
• Pull the drawer closed
• Move towards the bowl
• Reach for the cloth
• Release the pot
• Grasp the bottle
• Lift the cloth
• Lift the red object
• Grasp the banana
• Lift the butter
• Reach for the banana on the table
• Place the ketchup bottle on the plate
• Grasp the drawer handle
• Move the ketchup bottle towards the plate
• Move towards the red object
• Place the banana on the plate
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Figure 8. Additional embodied planning of RoboBrain. (a)∼(c) show some good cases of RoboBrain’s embodied planning, while (d)
shows its bad case. More detailed analysis can be found in Sec.D.1.

19



hold the book

hold the cup drink_with the bottle

hold the hammeropen the microwave

stick the fork

hold the tennis_racket

drink_with the cup

catch the soccer_ball

pick the knife wash the wine glasswash the pot

Figure 9. Additional visualizations of diverse affordance areas. The text below each subfigure indicates the task instructions, while the
red bounding boxes represent the affordance areas predicted by the RoboBrain model. The visualizations in the first three rows demonstrate
that our RoboBrain model effectively identifies reasonable affordance areas based on human instructions and visual information. The fourth
row presents several failure cases, which may stem from the model’s lack of ability to perceive and localize in noisy environments. This
limitation could be attributed to the absence of such scenarios in the training data used during Stage 4. The complete prompt provided
to RoboBrain is: ”You are a Franka robot using joint control. The task is $TASK. Please predict all possible affordance areas of the end
effector.” Here, $TASK represents specific task instructions, such as ”drink with the cup.”
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place green cube on table

place green rice chip bag into top 
drawer

open bottom drawer

make a cup of coffee with keurig 
machine

Pick up a white plate, and then 
place it on the red plate

place green rice chip bag into 
top drawer

pick up the blue cup and put it 
into the brown cup

make a piece of toast with 
the oven

pick sponge from middle drawer 
and place on counter

Pick up the object on the table 
and place it in the cup

 opening the fridge folding a cloth

Figure 10. Additional visualizations of diverse 2D trajectories. The red-to-purple gradient curves represent the ground truth, while the
green-to-blue gradient curves indicate the predicted trajectories. The visualizations in the first two rows demonstrate that our RoboBrain
model effectively generates end-effector manipulation curves based on the robot’s observations and task instructions. The third row shows
that RoboBrain is not merely fitting trajectories but also exhibits the ability to generate more reasonable and feasible curves. The fourth row
presents some failure cases, which stem from a lack of spatial awareness and world knowledge. These limitations result in an inability to
accurately localize the objects involved in interactions, account for physical constraints, and adapt to the variability of deformable objects.
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Figure 11. Additonal visualizations of prompts for Gemini. The prompts encapsulate the task description for robotic arm action
recognition, the components of the target, and the desired response format. Additionally, an example is included to assist Gemini in
understanding the specific task.
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