
KALAHash: Knowledge-Anchored Low-Resource Adaptation for Deep Hashing

Shu Zhao1, Tan Yu2, Xiaoshuai Hao3, Wenchao Ma1, Vijaykrishnan Narayanan1

1The Pennsylvania State University,
2NVIDIA,
3Samsung

{smz5505, vijaykrishnan.narayanan}@psu.edu

Abstract

Deep hashing has been widely used for large-scale approx-
imate nearest neighbor search due to its storage and search
efficiency. However, existing deep hashing methods predom-
inantly rely on abundant training data, leaving the more chal-
lenging scenario of low-resource adaptation for deep hashing
relatively underexplored. This setting involves adapting pre-
trained models to downstream tasks with only an extremely
small number of training samples available. Our preliminary
benchmarks reveal that current methods suffer significant per-
formance degradation due to the distribution shift caused
by limited training samples. To address these challenges,
we introduce Class-Calibration LoRA (CLoRA), a novel
plug-and-play approach that dynamically constructs low-rank
adaptation matrices by leveraging class-level textual knowl-
edge embeddings. CLoRA effectively incorporates prior
class knowledge as anchors, enabling parameter-efficient
fine-tuning while maintaining the original data distribu-
tion. Furthermore, we propose Knowledge-Guided Discrete
Optimization (KIDDO), a framework to utilize class knowl-
edge to compensate for the scarcity of visual information and
enhance the discriminability of hash codes. Extensive exper-
iments demonstrate that our proposed method, Knowledge-
Anchored Low-Resource Adaptation Hashing (KALAHash),
significantly boosts retrieval performance and achieves a 4×
data efficiency in low-resource scenarios.

Code —
https://github.com/Tree-Shu-Zhao/KALAHash.pytorch

Introduction
Deep hashing has emerged as a powerful technique for large-
scale approximate nearest neighbor search, offering signif-
icant advantages in terms of storage efficiency and search
speed (Luo et al. 2023). While deep hashing methods have
shown remarkable performance, they typically rely on the
availability of large amounts of data for effective train-
ing, which has been a cornerstone of their success but also
presents limitations in scenarios where data availability is
constrained.

In this paper, we introduce a challenging scenario: low-
resource adaptation for deep hashing. This setting is char-
acterized by the need to adapt pre-trained models to the

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

FF
T LB

Lo
RA Ou

rs
0

10

20

30

40

50

60

70

m
AP

14.7

39.5 41.5

59.6

FF
T LB

Lo
RA Ou

rs
0

10

20

30

40

50

60

70

Si
lho

ue
tte

 S
co

re 50.0 51.9 54.1
59.7

Figure 1: Performance comparison in low-resource set-
tings (1-shot on the CIFAR-10 dataset), including mean Av-
erage Precision scores (left) and Silhouette Scores (right).
FFT and LB denote Full Fine-Tuning and Lock Backbone,
respectively. The increasing mAP and Silhouette Score indi-
cate improved cluster separation and cohesion in the embed-
ding space, demonstrating the effectiveness of our approach
in addressing the distribution shift challenge. For the Silhou-
ette Score, we normalize its range from [−1,+1] to [0, 100].

hashing task with extremely limited data samples available
for training. The importance of this research direction is
twofold. First, it addresses the critical need for efficiency and
cost-effectiveness in developing retrieval systems. Annotat-
ing large datasets is often prohibitively expensive and time-
consuming, especially in specialized domains (Gui, Wang,
and Hebert 2017). By focusing on low-resource adaptation,
we aim to reduce the resources required for effective re-
trieval systems while maintaining high performance. Sec-
ond, this approach enables rapid adaptation to new domains
or emerging topics, a crucial capability in today’s fast-paced
information landscape (Cohen et al. 2022).

Despite its practical importance, this problem has re-
ceived relatively little attention in the research community.
Our preliminary benchmarks reveal significant challenges
in low-resource adaptation for deep hashing. Specifically,
we observe substantial performance degradation in existing
methods when faced with limited training samples, as illus-
trated in Figure 1. Full Fine-Tuning (FFT) achieves a mean
Average Precision (mAP) of only 14.7%. While Lock Back-
bone (LB) shows improvements, it also limits the ability of
model fine-tuning and achieves 39.5% mAP. Even equipped
with LoRA (Hu et al. 2022), an advanced technique for
enabling parameter-efficient fine-tuning, it still falls short

ar
X

iv
:2

41
2.

19
41

7v
1

 [
cs

.C
V

]
 2

7
D

ec
 2

02
4

with an mAP score of 41.5%. We argue that the perfor-
mance gap is primarily attributed to the distribution shift,
a mismatch between the data distributions of the pre-trained
and downstream tasks, occurring when models trained on
large datasets are adapted to downstream tasks with scarce
data. To measure how this issue affects the distributions of
hash codes in hamming space, we employ the Silhouette
Score (Rousseeuw 1987) to measure how similar a class is to
its own cluster compared to others. FFT achieves a Silhou-
ette Score of 50.0%, denoting the embedding space has col-
lapsed and all data points are close together. While LB and
LoRA improve the Silhouette Score, they still cannot per-
form satisfactorily. The results further underscore the chal-
lenge of maintaining cohesive and well-separated clusters in
the embedding space under low-resource settings, highlight-
ing the need for more sophisticated adaptation strategies.

Therefore, we recognize the need for a novel approach
that can leverage additional sources of information to com-
pensate for the scarcity of data. Recent advancements in
Vision-Language Models (VLMs) have demonstrated their
ability to capture rich semantic relationships between vi-
sual concepts and textual descriptions (Radford et al. 2021;
Liu et al. 2023). These models, pre-trained on vast amounts
of image-text pairs, encapsulate a wealth of class-level
knowledge that can potentially guide the adaptation process
in low-resource settings. By tapping into this pre-existing
knowledge, we hypothesize that we can mitigate the effects
of distribution shift and enhance the discriminative power of
hash codes, even when faced with limited training samples.

Motivated by this, we leverage the knowledge within
pre-trained VLMs and propose Class-Calibration
LoRA (CLoRA), a novel plug-and-play approach that
dynamically constructs low-rank adaptation matrices by
leveraging class-level textual knowledge embeddings. It
effectively incorporates prior class knowledge as anchors,
enabling parameter-efficient fine-tuning while maintaining
the original data distribution. Additionally, we introduce
Knowledge-Guided Discrete Optimization (KIDDO), a
framework that utilizes class knowledge to compensate
for the scarcity of visual information and enhance the
discriminability of hash codes.

The main contributions of our work are as follows:

• We introduce and benchmark the problem of low-
resource adaptation in deep hashing, highlighting its im-
portance and challenges. Our benchmarks reveal signifi-
cant performance degradation in existing methods when
faced with limited training samples.

• We propose CLoRA, a novel plug-and-play approach that
leverages textual knowledge embeddings as anchors for
efficient adaptation in low-resource scenarios.

• We develop KIDDO, a knowledge-guided optimization
framework that injects knowledge into the optimization
process to enhance hash code generation.

• We demonstrate that our proposed method significantly
improves retrieval performance in challenging low-
resource settings through extensive experiments.

Related Work
Deep Hashing for Efficient Retrieval. Deep hashing has
emerged as a powerful approach for large-scale visual re-
trieval, leveraging deep learning to project high-dimensional
data into compact binary codes. The field has evolved from
early two-stage methods like CNNH (Xia et al. 2014) to
end-to-end frameworks such as DHHN (Lai et al. 2015),
which enabled simultaneous optimization of networks and
hash codes. The loss functions utilized in deep hashing can
be categorized into ranking-based (Wang, Shi, and Kitani
2016; He et al. 2018), pair-wise (Li, Wang, and Kang 2016;
Cao et al. 2017; Zhao et al. 2021), and point-wise meth-
ods (Yuan et al. 2020; Hoe et al. 2021; Wang et al. 2023a).
To address the challenge of discrete optimization, meth-
ods like DSDH (Li et al. 2017) have proposed direct opti-
mization of binary codes using techniques such as discrete
cyclic coordinate descent. Architectural innovations, partic-
ularly asymmetric designs introduced by DAPH (Shen et al.
2017) and further developed in ADSH (Jiang and Li 2018),
CCDH (Zhao et al. 2020), and CEDIH (Wu et al. 2024),
have significantly improved hash learning quality and effi-
ciency. Despite these advancements, challenges remain in
scenarios with limited data. UGH (Gui, Wang, and Hebert
2017) devises a three-phase framework for the few-shot
hashing. However, it needs to maintain a large hash func-
tion pool and select specific components during inference,
which significantly increases the inference delay. Moreover,
UGH cannot correctly select components under extremely
low-resource adaptation settings, leading to significant per-
formance degradation. Our method leverages the knowledge
within the pre-trained models as anchors and complemen-
tary information to boost performance under low-resource
adaptation settings.
Low-Resource Adaptation. Low-resource adaptation has
gained significant attention in various machine learning do-
mains, addressing scenarios with limited data for multi-
modal large language model fine-tuning (Liu et al. 2023;
Zhao et al. 2024; Zhao and Xu 2023b,a; Hao and Zhang
2023; Hao et al. 2023). Few-shot learning approaches, such
as prototypical networks (Snell, Swersky, and Zemel 2017)
and MAML (Finn, Abbeel, and Levine 2017), have pio-
neered tackling low-resource scenarios by learning transfer-
able knowledge that can quickly adapt to new tasks with
minimal data. Recently, low-rank adaptation (LoRA) (Hu
et al. 2022) have demonstrated efficient parameter-tuning
for large models. This approach has been particularly ef-
fective in natural language processing and is gaining trac-
tion in vision tasks. Model merging (Pan, Cai, and Zhuang
2023; Wang et al. 2023b; Yang et al. 2024) combines sev-
eral model weights trained on different tasks to create a
new weight that can perform all tasks simultaneously. Our
work focuses on how to train a model for a specific task to
achieve better performance. In the specific domain of deep
hashing, low-resource adaptation remains relatively unex-
plored. While methods like Venkateswara et al. (2017) have
addressed domain adaptation for hashing, they typically as-
sume a substantial amount of target domain data. The chal-
lenge of adapting hash functions with extremely limited data
presents a significant research opportunity.

Images

Categories

Text Encoder

Transform
er Layer i

Transform
er Layer L

A photo of a
[CATEGORY]

KIDDO

W
ord Em

bed

Training-only

Inference

Learnable
Frozen

CLoRA

Patch Em
bed

Transform
er Layer 1

... ...

Hash Layer

Figure 2: Architecture overview of the proposed KALAHash
method, illustrating the integration of Class-Calibration
LoRA (CLoRA) and Knowledge-Guided Discrete Opti-
mization (KIDDO).

Method
Problem Formulation
Assuming models have been pre-trained on several large
source datasets, our goal is to adapt these pre-trained mod-
els to learn a hash function that maps images to binary
codes while preserving semantic similarity with an ex-
tremely small training set D = {xi,yi}Ni=1, including a set
of N images and their labels.

LoRA Background
LoRA (Hu et al. 2022) is an efficient method for fine-tuning
large models. It works by introducing small, trainable matri-
ces into layers of a Transformer model (Vaswani et al. 2017).
In a standard fully-connected layer, the output is calculated
as

o = Wx, (1)
where W ∈ Rd×k is the pre-trained weight matrix; x ∈
Rk×1 is an input vector; o ∈ Rd×1 is the output vector.
LoRA modifies Equation (1) by adding a low-rank update:

ô = Wx+∆Wx = Wx+ ηPQx. (2)

Here, Q ∈ Rr×k and P ∈ Rd×r are small matrices that form
the low-rank update. r ≪ min(k, d). η is a scale factor. The
key is that the number of parameters in P/Q is much smaller
than the original weight matrix W. During fine-tuning, only
Q and P are updated, while the original model weights re-
main frozen. This parameter-efficient approach allows for
quick adaptation of large models to new tasks with minimal
additional parameters.

However, LoRA, while efficient for parameter updates,
does not inherently incorporate task-specific knowledge or
constraints. Its generic adaptation mechanism lacks the
guidance needed to effectively map high-dimensional im-
age features to compact binary hash codes, especially when
provided with only a handful of examples per class, as illus-
trated in Figure 1. For deep hashing, especially with limited

data, additional guidance about class relationships or desired
hash code properties are crucial for generating discrimina-
tive hash codes.

To address these limitations and provide the necessary
task-specific guidance, we propose leveraging class-level
textual knowledge. This approach aims to inject semantic in-
formation directly into the adaptation process, bridging the
gap between the limited visual data and the rich semantic
understanding required for effective hash code generation.
By incorporating textual descriptions of image categories,
we can provide additional context and structure to guide the
learning process, even in extremely low-resource scenarios.
This textual knowledge serves as a form of prior informa-
tion, helping to constrain the adaptation process and ensure
that the resulting hash codes maintain semantic relevance.
In the following section, we detail our method for extracting
and utilizing this class-level textual knowledge to enhance
the deep hashing process.

Overview

Figure 2 illustrates the architecture of the proposed method.
We build our approach on the pre-trained CLIP model (Rad-
ford et al. 2021), including a text and a vision encoder con-
sisting of multiple transformer layers.

The Text Encoder pre-extracts class-level textual knowl-
edge K using category names. The Vision Encoder splits im-
ages into fixed-size patches which are projected into patch
embeddings V0 by the Patch Embed module, and encodes
V0 to vision tokens VL by transformer layers, where L de-
notes the number of transformer layers. During the encoding
process, we introduce Class-Calibration LoRA (CLoRA)
module to dynamically construct a weight adjustment ma-
trix ∆W by incorporating mapped knowledge K̂ and input
vision tokens Vi−1 from the i-th transformer layer to guide
the fine-tuning process. For simplicity, we will omit the sub-
scripts of vision tokens in the following sections. Then, the
vision tokens V are mapped into hash features H. To further
improve the hash code generation, we employ Knowledge-
Guided Discrete Optimization (KIDDO), a framework that
injects the mapped textual knowledge T into the optimiza-
tion process.

Class-Level Textual Knowledge Generation

We use the Text Encoder to pre-extract class-level textual
knowledge:

K = [k1,k2, · · · ,kC]
⊤ ∈ RC×dt , (3)

where C is the number of categories. Specifically, we
create a prompt based on the hand-crafted template “a
photo of a [CATEGORY].” For instance, given a cat-
egory name dog, the prompt is instantiated as “a photo
of a dog.” Next, the Word Embed module and Text En-
coder map the prompt into a class-level textual knowledge
embedding ki. Note that the konwledge generation only
needs to be performed once in the whole process.

AVG

Knowledge Pool

query

value

Top r

Figure 3: Architecture of the proposed CLoRA module.

Class-Calibration LoRA
We observe that the weight adjustment matrix ∆W in Equa-
tion (2) can be constructed by:

∆W = ηPQ = η

r∑
i=1

piq
T
i , (4)

where qi ∈ Rk×1, pi ∈ Rd×1.
As shown in Figure 3, to constrain the weight adjustment

matrix space, spanning by piq
T
i , we replace pi with the

class-level textual knowledge ki defined in Equation (3) as
anchors:

∆W = η

r∑
i=1

k̂iq
T
i , (5)

where k̂i = F(ki), F is a linear layer and F(·) ∈ Rd×1.
Considering that different inputs need different knowl-

edge, we design a query-based strategy to dynamically se-
lect r knowledge vectors from the knowledge pool K̂:

K̂v = Topr(avg(V), K̂), (6)
where V = [v1, · · · ,vt] is the vision tokens; avg(·) denotes
the average pooling operation. Topr(·, ·) selects the top r

vectors in K̂ with the largest cosine similarity to avg(V),
and K̂v = [k̂v

1, · · · , k̂v
r].

Finally, the weight adjustment matrix is constructed by:

∆W = η

r∑
i=1

k̂v
i q

T
i . (7)

Knowledge-Guided Discrete Optimization
We first employ a similarity loss function Ls and a quantiza-
tion loss Lq that are widely used in deep hashing methods,
which makes the Hamming distance of two similar points as
small as possible and vice versa:

Ls = −
∑
sij∈S

(
sijθij − log

(
1 + eθij

))
,

Lq = ∥H−B∥22,
(8)

where sij is 1 if image i and j belong to the same category
otherwise 0; θij = 1

2h
⊤
i hj ; H = [h1, · · · ,hn]

⊤ are real-
value image features generated from Hashing layer; B =
[b1, · · · ,bn]

⊤, bi ∈ {−1, 1}b is the learned binary code
and is randomly initialized before the training.

In low-resource settings, the limited number of training
images may not be sufficient to cover all aspects of visual
concepts, thus leading to over-fitting issues. We argue that
language can be used as an abstract conceptual representa-
tion as anchor points to aid visual feature learning. For in-
stance, while “dog” is visually represented in various ways
that cannot all be covered by a limited number of images,
they can be abstracted into a single linguistic concept “dog”.

Motivated by this, we add an alignment loss La between
the learned binary codes B and the textual knowledge K to
further improve the hash code generation by leveraging the
textual knowledge as anchors:

La = ∥Y −T⊤B∥22, (9)
where T = G(K), G(·) denotes a fully-connected layer and
Y = [y1, · · · ,yn] ∈ RC×n are one-hot label vectors where
C is the number of categories.

Finally, the loss function is

L = αLa + βLq + γLs, (10)

where α, β, and γ are scalars that balance the loss values.
When optimizing the loss function L in Equation (10),

it not only exploits the knowledge from the text encoder as
complementary information to improve the image hash code
generation but also enables the possibility of discrete opti-
mization. To optimize the loss function in Equation (10), we
use the standard backpropagation algorithm to learn H and
T. To optimize B, we fix all the variables except for B and
rewrite the optimization formula as

min
B

α
∥∥Y −T⊤B

∥∥2
2
+ β ∥H−B∥22

s.t. B ∈ {−1, 1}N×b.
(11)

Then, we adopt the discrete cyclic coordinate descent (DCC)
method proposed by Shen et al. (2015) to optimize B col-
umn by column. The optimal solution of Equation (11) is

Bi = sign(Si −B
′⊤T

′
Ti), (12)

where Bi is the ith column of B, B
′

is the matrix of B ex-
cluding Bi; Si is the ith row of matrix S, S = βYT+ γH,
S

′
is the matrix of S excluding Si; Ti is the ith row of T,

T
′

is the matrix of T excluding Ti.
In Equation (12), textual knowledge is injected into bi-

nary code B, further improving the optimization process of
hash code generation H. In the following section, we will
demonstrate the effectiveness of our proposed method.

Experiments
Datasets
We evaluate our proposed method on three standard bench-
marks: NUS-WIDE (Chua et al. 2009), MS-COCO (Lin
et al. 2014), and CIFAR-10 (Krizhevsky and Hinton 2009).
NUS-WIDE is a multi-label dataset. Following Hoe et al.
(2021), we adopt a subset of the original NUS-WIDE
dataset, which has 195, 834 images associated with the
21 most frequent classes. We randomly select 2, 100 im-
ages (1, 00 images per class) to form the query set, and the
rest is used as the gallery set.

Method NUS-WIDE MS-COCO CIFAR-10
1-shot 2-shot 4-shot 8-shot 1-shot 2-shot 4-shot 8-shot 1-shot 2-shot 4-shot 8-shot

HashNet (Cao et al. 2017) 65.23 66.27 70.54 73.56 58.81 62.44 65.28 67.50 41.68 44.97 69.96 76.58
DSDH (Li et al. 2017) 67.32 69.23 72.15 74.13 59.63 62.44 66.84 68.72 44.22 53.14 71.76 77.26
DCH (Cao et al. 2018) 65.55 66.04 70.92 71.48 60.32 62.26 66.51 67.70 39.53 48.69 67.03 75.59
GreedyHash (Su et al. 2018) 67.24 69.96 71.71 72.21 59.81 63.91 65.84 70.28 44.87 57.01 72.00 77.58
CSQ (Yuan et al. 2020) 65.75 67.31 70.96 71.51 59.23 63.09 66.14 70.18 46.66 60.54 69.50 77.69
OrthoHash (Hoe et al. 2021) 67.31 70.96 71.48 71.59 60.21 64.13 66.34 70.23 46.68 60.03 73.37 77.63
HSWD† (Doan, Yang, and Li 2022) 67.58 67.83 70.44 74.10 60.15 62.86 66.28 69.06 48.63 57.36 73.24 79.37
MDSH‡ (Wang et al. 2023a) 67.23 68.22 70.47 72.04 58.55 59.89 60.94 63.95 47.33 58.69 73.16 78.09

KALAHash 70.69 71.26 74.11 75.24 65.32 66.43 71.98 73.96 57.54 70.00 80.14 83.00

Table 1: Comparison of mAP on NUS-WIDE, MS-COCO, and CIFAR-10 datasets for different deep hashing methods under
various low-resource settings (1-shot to 8-shot).†: we use the HashNet-HSWD. ‡: MSDH conducted experiments only on single-
label datasets in the original paper.

Method NUS-WIDE MS-COCO CIFAR-10

HashNet 65.23 58.81 41.68
+CLoRA 69.41 61.08 54.20
DSDH 67.32 59.63 44.22
+CLoRA 70.02 62.43 54.02
DCH 65.55 60.32 39.53
+CLoRA 69.48 61.83 50.55
GreedyHash 67.24 59.81 44.87
+CLoRA 70.30 60.74 51.77
CSQ 65.75 59.23 46.66
+CLoRA 69.14 60.54 49.44
OrthoHash 67.31 60.21 49.50
+CLoRA 69.61 61.39 51.58
HSWD 67.58 58.55 48.63
+CLoRA 68.85 60.75 52.63
MDSH 67.23 58.55 47.33
+CLoRA 68.24 60.34 48.29

Table 2: Plug-and-play capability of CLoRA. mAP improve-
ments when applying CLoRA to various baseline deep hash-
ing methods on NUS-WIDE, MS-COCO, and CIFAR-10
datasets.

MS-COCO is a multi-label dataset containing 82, 783 train-
ing images and 40, 504 validation images belonging to 80
classes. We combine the two sets of images and prune them
without labels. Following Hoe et al. (2021), we randomly
choose 5, 000 images as the query set, and the rest are
viewed as the gallery set.
CIFAR-10 consists of 60, 000 images with 32 × 32 resolu-
tion. It has 10 classes, each containing 6, 000 samples. Fol-
lowing Cao et al. (2018), we randomly sample 1, 000 im-
ages (100 images per class) to construct the query set and
the rest is used to form the gallery set.

Evaluation Protocol
In our low-rank adaptation setting, we randomly split NK

samples per class to create the training set. NK is 1, 2,
4, or 8 in our experiments. Following the standard eval-
uation protocol, we report the mean Average Precision at
K (mAP@K), the mean of average precision scores of

Method NUS-WIDE MS-COCO CIFAR-10

KALAHash 70.69 65.32 57.54
w.o. CLoRA 68.31 61.49 46.38
w.o. KIDDO 66.97 60.48 50.89

Table 3: Ablation study showing the impact of CLoRA and
KIDDO components on mAP performance across NUS-
WIDE, MS-COCO, and CIFAR-10 datasets.

the top K retrieved images, to evaluate the retrieval per-
formance. Specifically, we report mAP@59000 for CIFAR-
10, mAP@5000 for NUS-WIDE, and mAP@5000 for MS-
COCO, respectively. Notably, for multi-label datasets, two
images are considered similar if they share at least one com-
mon label.

Implementation Details

For a fair comparison, all methods, including baselines,
use the same backbone model, optimizer, training hyper-
parameters, etc.
Backbone and CLoRA. We employ the CLIP ViT-B/32 as
the backbone model to conduct experiments. CLoRA can be
inserted into various positions in backbones. In our experi-
ments, it is put into the key and value matrices of the multi-
head attention module in the last transformer layer. η and r
are set to 1.0 and 1, respectively.
Hash Layer. A hash layer is utilized to map the original fea-
tures extracted from the backbone model to compacted hash
codes. Following Hoe et al. (2021), the hash layer consists of
a full-connected layer, a batch norm layer and a tanh layer.
In our experiments, we use a 16-bit hash layer as default.
Training Details. We freeze all the parameters expected for
the CLoRA module, G, F , and hash layer. We use SGD with
0.9 momentum and 1e − 5 weight decay as the optimizer.
The learning rate is set to 0.01. The batch size is set to 8. α,
β, and γ are set to 0.1, 1.0, and 3.0, respectively.

If not specified, experiments are conducted on the CIFAR-
10 dataset with the 1-shot setting. Detailed settings can be
found in the code we provided.

1 2 4 8 16 32 64 128 256 500
#Shots

20

30

40

50

60

70

80

90

m
AP

KALAHash
MDSH
HSWD
OrthoHash
CSQ
GreedyHash
DSDH
HashNet
DCH

MDSH-FFT

Figure 4: Performance comparison of KALAHash and base-
line methods as the number of shots increases from 1 to 500
on CIFAR-10 dataset. MDSH-FFT denotes all the parame-
ters are fine-tuned in the MDSH baseline.

Variant NUS-WIDE MS-COCO CIFAR-10

CLoRA 70.69 65.32 57.54
LoRA (Hu et al. 2022) 68.24 61.63 47.05
Prompt Tuning (Zhou et al. 2022) 69.65 61.37 49.70
Bias Tuning (Zaken, Goldberg, and Ravfogel 2022) 69.90 63.26 45.81

Table 4: Comparison of CLoRA with other parameter-
efficient fine-tuning techniques on NUS-WIDE, MS-COCO
and CIFAR-10 datasets.

Main Results
We choose several representative deep hashing methods as
baselines, including HashNet (Cao et al. 2017), DSDH (Li
et al. 2017), DCH (Cao et al. 2018), GreedyHash (Su et al.
2018), CSQ (Yuan et al. 2020), OrthoHash (Hoe et al. 2021),
HSWD (Doan, Yang, and Li 2022), and MDSH (Wang et al.
2023a).

Table 1 presents the mAP results for NUS-WIDE, MS-
COCO, and CIFAR-10 across different low-resource set-
tings (1-8 shots). We note that SOTA methods do not
show absolute competitiveness in low-resource settings as
on full-size datasets, highlighting the need for more so-
phisticated adaptation strategies. Our proposed KALAHash
consistently outperforms all baselines across all datasets
and shot settings. The performance improvements are par-
ticularly significant in the extreme low-resource scenarios
(1-shot and 2-shot). For CIFAR-10, KALAHash achieves
8.91%-18.01% improvements over the baselines in the 1-
shot setting. This performance gap remains substantial even
as the number of shots increases, with KALAHash maintain-
ing 3.63%-7.41% improvements in the 8-shot setting. We
can also observe the same trend on the NUS-WIDE and MS-
COCO datasets. The multi-label nature of these two datasets
highlights KALAHash’s ability to handle complex semantic
relationships even with limited data.

Plug-and-Play Capability
Table 2 demonstrates KALAHash’s plug-and-play capa-
bility by applying CLoRA to various baseline methods.

0 100 200 300 400 500
#Parameters

35

40

45

50

55

60

65

70

m
A
P

SLIP ViT-S
[104.71M]

CLIP ViT-B
[151.28M]

CLIP ViT-L
[427.62M]

Figure 5: Performance scaling of KALAHash with different
backbone models (SLIP ViT-S, CLIP ViT-B, CLIP ViT-L)
in relation to the number of model parameters.

Across all baselines and datasets, adding CLoRA consis-
tently improves performance. Specifically, the ranges of im-
provements are from 1.01%-4.18% on NUS-WIDE, 0.93%-
2.80% on MS-COCO, and 0.96%-12.52% on CIFAR-10, re-
spectively. The results underscore the versatility and effec-
tiveness of our proposed method in enhancing existing deep
hashing approaches in low-resource scenarios.

Ablation Studies
To understand the contribution of each component in
KALAHash, we conduct ablation studies, as shown in Ta-
ble 3. Removing CLoRA results in a significant perfor-
mance drop across all datasets, with mAP decreasing by
2.38%, 3.83%, and 11.16% on NUS-WIDE, MS-COCO,
and CIFAR-10 respectively. Similarly, removing KIDDO
leads to performance degradation, with mAP decreasing by
3.72%, 4.84%, and 6.65% on NUS-WIDE, MS-COCO, and
CIFAR-10 respectively, demonstrating the effectiveness of
injecting textual knowledge into the optimization process.

We also compare CLoRA to other parameter-efficient
fine-tuning techniques in Table 4. CLoRA outperforms stan-
dard LoRA (Hu et al. 2022), Prompt Tuning (Zhou et al.
2022), and Bias Tuning (Zaken, Goldberg, and Ravfogel
2022) across all datasets, demonstrating its effectiveness.

Scalability
Figure 4 presents a comprehensive analysis of KALAHash’s
performance as the number of shots increases from 1 to
500 on CIFAR-10. KALAHash consistently outperforms all
baselines with limited training samples (1-16 shots). As the
number of training samples increases, our approach still
maintains a performance comparable to SOTA’s. This high-
lights the method’s effectiveness in extremely low-resource
scenarios while also demonstrating its ability to maintain su-
perior performance as more data becomes available. We note
that the SOTA methods do not show absolute competitive-
ness. The reason may be that we lock the backbone and only
fine-tune the FC layer, limiting its ability. However, even full
fine-tuning of VLMs on full datasets can also lead to serious

FFT LB Ours

Figure 6: t-SNE visualization of learned hash codes for Full Fine-Tuning (FFT), Lock Backbone (LB), and our proposed method
(KALAHash). Different colors denote different categories.

q k v qk qv kv qkv

1

2

3

4

31.28

16.80

20.36 14.44

14.26

12.49

20.34

16.86 13.64

56.87

55.31

57.53

55.89

57.37

51.23

49.62

54.24

47.40

48.70

56.95

41.76

49.62

53.21

57.54

56.85

49.23

56.59

55.72

15

20

25

30

35

40

45

50

55

0.0001 0.001 0.01 0.1 1

0.001

0.01

0.1

1

53.24

54.21

54.74 53.13

54.00 54.65

50.56

55.34

55.78

56.28

55.67

56.21

57.02

55.21

56.62

57.36

56.48

57.54

55.61

55.13

51

52

53

54

55

56

57

0.2 0.4 0.6 0.8 1

1

2

4

8

49.22

48.42

51.23

53.94

51.23

53.64 52.76

55.43

57.26

54.55

56.21

56.41

54.62

55.74

57.41

54.99

56.87

57.54

55.71

56.82
49

50

51

52

53

54

55

56

57

Position

La

ye
rs

Figure 7: Parameter sensitivity analysis for KALAHash, showing mAP performance across different hyper-parameter settings.

distribution shift issue. To demonstrate this, we report the
result of MDSH-FFT on the full-size CIFAR-10 dataset as
an orange cross, illustrated in Figure 4.

Figure 5 illustrates the performance of KALAHash across
different backbone models, including SLIP ViT-S (Mu et al.
2022), CLIP ViT-B, and CLIP ViT-L (Radford et al. 2021).
The results show that KALAHash’s performance scales well
with larger backbone models, achieving higher mAP scores
as the number of parameters increases. This demonstrates
the method’s ability to leverage more powerful pre-trained
models effectively.

Qualitative Analysis

Figure 6 provides a t-SNE visualization (Van der Maaten
and Hinton 2008) of the learned hash codes for Full Fine-
Tuning (FFT), Lock Backbone (LB), and our proposed
method. The results show that the embedding space of FFT
is collapsed due to the distribution shift issue. While LB
improves this, it still cannot perform satisfactorily, as the
red points are scattered in the embedding space. The visu-
alization of KALAHash clearly shows that it produces more
compact and well-separated clusters than the other methods.
This qualitative result supports our quantitative findings and
illustrates KALAHash’s ability to learn more discriminative
hash codes even in low-resource settings.

ViT-S/16 ViT-B/32 ViT-B/16 ViT-L/14

w.o. CLoRA 2.20 ± 0.03 1.17 ± 0.02 2.20 ± 0.04 6.28 ± 0.04
w. CLoRA 2.21 ± 0.05 1.17 ± 0.05 2.23 ± 0.02 6.33 ± 0.03

Table 5: Inference time (ms) per image comparison of vari-
ous VLMs with and without CLoRA. CLoRA demonstrates
negligible impact on inference speeds across different model
architectures.

Parameter Sensitivity
Figure 7 examines the sensitivity of KALAHash to its key
hyper-parameters, where “#Layers” denotes the number of
layers inserted by CLoRA, and “Position” means which at-
tention matrices are adjusted by CLoRA. The results show
that KALAHash is robust to parameter changes, maintaining
strong performance across a wide range of values.

Inference Time
We conducted a comprehensive analysis of inference times
to evaluate the computational efficiency of our proposed
CLoRA method across various backbones with and without
CLoRA. As shown in Table 5, the integration of CLoRA in-
troduces minimal computational overhead across all tested
architectures demonstrating that CLoRA maintains the effi-
ciency of the original models while providing the benefits of
knowledge-anchored adaptation.

Acknowledgment
This work was supported in part by Semiconductor Research
Corporation JUMP 2.0 PRISM Center.

References
Cao, Y.; Long, M.; Liu, B.; and Wang, J. 2018. Deep Cauchy
Hashing for Hamming Space Retrieval. In IEEE/CVF Com-
puter Vision and Pattern Recognition Conference (CVPR).
Cao, Z.; Long, M.; Wang, J.; and Yu, P. S. 2017. HashNet:
Deep Learning to Hash by Continuation. In International
Conference on Computer Vision (ICCV).
Chua, T.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng, Y.
2009. NUS-WIDE: a real-world web image database from
National University of Singapore. In Conference On Image
And Video Retrieval (CIVR).
Cohen, N.; Gal, R.; Meirom, E. A.; Chechik, G.; and Atz-
mon, Y. 2022. ”This Is My Unicorn, Fluffy”: Personaliz-
ing Frozen Vision-Language Representations. In European
Conference on Computer Vision (ECCV).
Doan, K. D.; Yang, P.; and Li, P. 2022. One Loss for Quan-
tization: Deep Hashing with Discrete Wasserstein Distribu-
tional Matching. In IEEE/CVF Computer Vision and Pattern
Recognition Conference (CVPR).
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learn-
ing Representations (ICLR).
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
International Conference on Machine Learning (ICML).
Gui, L.; Wang, Y.; and Hebert, M. 2017. Few-Shot Hash
Learning for Image Retrieval. In International Conference
on Computer Vision Workshops (ICCV Workshops).
Hao, X.; Li, R.; Zhang, H.; Li, D.; Yin, R.; Jung, S.; Park,
S.; Yoo, B.; Zhao, H.; and Zhang, J. 2024a. MapDistill:
Boosting Efficient Camera-Based HD Map Construction via
Camera-LiDAR Fusion Model Distillation. In European
Conference on Computer Vision (ECCV).
Hao, X.; Wei, M.; Yang, Y.; Zhao, H.; Zhang, H.; Zhou, Y.;
Wang, Q.; Li, W.; Kong, L.; and Zhang, J. 2024b. Is Your
HD Map Constructor Reliable under Sensor Corruptions?
In Conference on Neural Information Processing Systems
(NeurIPS).
Hao, X.; and Zhang, W. 2023. Uncertainty-Aware Align-
ment Network for Cross-Domain Video-Text Retrieval.
In Conference on Neural Information Processing Systems
(NeurIPS).
Hao, X.; Zhang, W.; Wu, D.; Zhu, F.; and Li, B. 2023. Dual
Alignment Unsupervised Domain Adaptation for Video-
Text Retrieval. In IEEE/CVF Computer Vision and Pattern
Recognition Conference (CVPR).
He, K.; Çakir, F.; Bargal, S. A.; and Sclaroff, S. 2018. Hash-
ing as Tie-Aware Learning to Rank. In IEEE/CVF Computer
Vision and Pattern Recognition Conference (CVPR).

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In IEEE/CVF Computer
Vision and Pattern Recognition Conference (CVPR).

Hoe, J. T.; Ng, K. W.; Zhang, T.; Chan, C. S.; Song, Y.; and
Xiang, T. 2021. One Loss for All: Deep Hashing with a Sin-
gle Cosine Similarity based Learning Objective. In Confer-
ence on Neural Information Processing Systems (NeurIPS).

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2022. LoRA: Low-Rank Adap-
tation of Large Language Models. In International Confer-
ence on Learning Representations (ICLR).

Jiang, Q.; and Li, W. 2018. Asymmetric Deep Supervised
Hashing. In AAAI Conference on Artificial Intelligence
(AAAI).

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Univer-
sity of Toronto.

Lai, H.; Pan, Y.; Liu, Y.; and Yan, S. 2015. Simultaneous fea-
ture learning and hash coding with deep neural networks. In
IEEE/CVF Computer Vision and Pattern Recognition Con-
ference (CVPR).

Li, Q.; Sun, Z.; He, R.; and Tan, T. 2017. Deep Supervised
Discrete Hashing. In Conference on Neural Information
Processing Systems (NeurIPS).

Li, W.; Wang, S.; and Kang, W. 2016. Feature Learning
Based Deep Supervised Hashing with Pairwise Labels. In
International Joint Conference on Artificial Intelligence (IJ-
CAI).

Lin, T.; Maire, M.; Belongie, S. J.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
COCO: Common Objects in Context. In European Confer-
ence on Computer Vision (ECCV).

Liu, H.; Li, C.; Wu, Q.; and Lee, Y. J. 2023. Visual Instruc-
tion Tuning. In Conference on Neural Information Process-
ing Systems (NeurIPS).

Luo, X.; Wang, H.; Wu, D.; Chen, C.; Deng, M.; Huang,
J.; and Hua, X. 2023. A Survey on Deep Hashing Meth-
ods. ACM Transactions on Knowledge Discovery from Data
(TKDD).

Mu, N.; Kirillov, A.; Wagner, D. A.; and Xie, S. 2022. SLIP:
Self-supervision Meets Language-Image Pre-training. In
European Conference on Computer Vision (ECCV).

Ng, K. W.; Zhu, X.; Song, Y.; and Xiang, T. 2024. Con-
ceptHash: Interpretable Fine-Grained Hashing via Concept
Discovery. In IEEE/CVF Computer Vision and Pattern
Recognition Conference Workshops (CVPRW).

Pan, Z.; Cai, J.; and Zhuang, B. 2023. Stitchable neural net-
works. In IEEE/CVF Computer Vision and Pattern Recog-
nition Conference (CVPR).

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
Krueger, G.; and Sutskever, I. 2021. Learning Transferable
Visual Models From Natural Language Supervision. In In-
ternational Conference on Machine Learning (ICML).

Rousseeuw, P. J. 1987. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal of
computational and applied mathematics.
Shen, F.; Gao, X.; Liu, L.; Yang, Y.; and Shen, H. T. 2017.
Deep Asymmetric Pairwise Hashing. In ACM International
Conference on Multimedia (ACM MM).
Shen, F.; Shen, C.; Liu, W.; and Shen, H. T. 2015. Super-
vised Discrete Hashing. In IEEE/CVF Computer Vision and
Pattern Recognition Conference (CVPR).
Snell, J.; Swersky, K.; and Zemel, R. S. 2017. Prototypical
Networks for Few-shot Learning. In Conference on Neural
Information Processing Systems (NeurIPS).
Su, S.; Zhang, C.; Han, K.; and Tian, Y. 2018. Greedy
Hash: Towards Fast Optimization for Accurate Hash Coding
in CNN. In Conference on Neural Information Processing
Systems (NeurIPS).
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research (JMLR).
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Conference on Neural Informa-
tion Processing Systems (NeurIPS).
Venkateswara, H.; Eusebio, J.; Chakraborty, S.; and Pan-
chanathan, S. 2017. Deep Hashing Network for Unsuper-
vised Domain Adaptation. In IEEE/CVF Computer Vision
and Pattern Recognition Conference (CVPR).
Wang, L.; Pan, Y.; Liu, C.; Lai, H.; Yin, J.; and Liu, Y. 2023a.
Deep Hashing with Minimal-Distance-Separated Hash Cen-
ters. In IEEE/CVF Computer Vision and Pattern Recogni-
tion Conference (CVPR).
Wang, Q.; Yang, X.; Lin, S.; and Geng, X. 2023b. Learn-
gene: Inheriting Condensed Knowledge from the Ancestry
Model to Descendant Models. CoRR, abs/2305.02279.
Wang, X.; Shi, Y.; and Kitani, K. M. 2016. Deep Super-
vised Hashing with Triplet Labels. In Asian Conference on
Computer Vision (ACCV).
Wu, D.; Su, Q.; Li, B.; and Wang, W. 2024. Pairwise-Label-
Based Deep Incremental Hashing with Simultaneous Code
Expansion. In AAAI Conference on Artificial Intelligence
(AAAI).
Xia, R.; Pan, Y.; Lai, H.; Liu, C.; and Yan, S. 2014. Super-
vised Hashing for Image Retrieval via Image Representa-
tion Learning. In AAAI Conference on Artificial Intelligence
(AAAI).
Yang, E.; Wang, Z.; Shen, L.; Liu, S.; Guo, G.; Wang, X.;
and Tao, D. 2024. AdaMerging: Adaptive Model Merging
for Multi-Task Learning. In International Conference on
Learning Representations (ICLR).
Yuan, L.; Wang, T.; Zhang, X.; Tay, F. E. H.; Jie, Z.; Liu, W.;
and Feng, J. 2020. Central Similarity Quantization for Ef-
ficient Image and Video Retrieval. In IEEE/CVF Computer
Vision and Pattern Recognition Conference (CVPR).
Zaken, E. B.; Goldberg, Y.; and Ravfogel, S. 2022. Bit-
Fit: Simple Parameter-efficient Fine-tuning for Transformer-
based Masked Language-models. In Annual Meeting of the
Association for Computational Linguistics (ACL).

Zhao, S.; Wu, D.; Zhang, W.; Zhou, Y.; Li, B.; and Wang, W.
2020. Asymmetric Deep Hashing for Efficient Hash Code
Compression. In ACM International Conference on Multi-
media (ACM MM).
Zhao, S.; Wu, D.; Zhou, Y.; Li, B.; and Wang, W. 2021. Res-
cuing Deep Hashing from Dead Bits Problem. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Zhao, S.; and Xu, H. 2023a. Less is More: Toward Zero-
Shot Local Scene Graph Generation via Foundation Models.
CoRR, abs/2310.01356.
Zhao, S.; and Xu, H. 2023b. NEUCORE: Neural Concept
Reasoning for Composed Image Retrieval. In UniReps, Pro-
ceedings of Machine Learning Research.
Zhao, S.; Zou, X.; Yu, T.; and Xu, H. 2024. Reconstruct be-
fore Query: Continual Missing Modality Learning with De-
composed Prompt Collaboration. CoRR, abs/2403.11373.
Zhou, K.; Yang, J.; Loy, C. C.; and Liu, Z. 2022. Learning to
Prompt for Vision-Language Models. International Journal
of Computer Vision (IJCV).

Appendix

16 32 48 64
#Bits

55

60

65

70

75
m

A
P

NUS-WIDE
MS-COCO
CIFAR-10

Figure 8: Performance of KALAHash as the number of bits
increases from 16 to 64 on NUS-WIDE, MS-COCO, and
CIFAR-10 datasets.

Scalability of the Number of Bits
Figure 8 presents a comprehensive analysis of KALAHash’s
performance as the number of bits increases from 16 to 64
on NUS-WIDE, MS-COCO, and CIFAR-10. As the num-
ber of training samples increases, our approach consistently
improves the retrieval performance, which demonstrates its
ability to scale up the number of bits.

Silhouette Score
Table 6 shows the results of the Silhouette Score. KALA-
Hash consistently outperforms baseline methods, demon-
strating the effectiveness of our proposed method. Besides,
we notice that methods using pair-wise loss achieve a higher
score than those using point-wise loss. The reason may be
that contrastive loss has a stronger ability to push hash codes
belonging to different classes to different locations in the
embedding space.

Parameter Sensitivity
Figure 9 examines the sensitivity of KALAHash to γ.
KALAHash maintains relatively high mAP scores when
γ ≤ 3. There is a noticeable drop in performance when
γ ≥ 4, indicating that extremely high values may affect the
optimization progress, leading to a suboptimal result.

PR Curve
Figure 10 illustrates the Precision-Recall (PR) curves for
KALAHash and baseline methods on NUS-WIDE, MS-
COCO, and CIFAR-10 datasets. These curves provide a
comprehensive view of the model’s performance across dif-
ferent precision and recall thresholds. The results demon-
strate that KALAHash consistently exhibits competitive per-
formance across all three datasets, maintaining a good bal-
ance between precision and recall. The consistent perfor-
mance across varied datasets highlights the versatility and
robustness of our proposed method.

Method Silhouette Score

HashNet (Cao et al. 2017) 57.48
DSDH (Li et al. 2017) 57.50
DCH (Cao et al. 2018) 55.96
GreedyHash (Su et al. 2018) 52.25
CSQ (Yuan et al. 2020) 52.36
OrthoHash (Hoe et al. 2021) 51.84
HSWD (Doan, Yang, and Li 2022) 55.54
MDSH (Wang et al. 2023a) 52.07

KALAHash 59.76

Table 6: Silhouette Scores for various hashing methods on
CIFAR-10.

1 2 3 4
25

30

35

40

45

50

55

60

m
A

P
Figure 9: Sensitivity analysis of KALAHash with respect to
γ on CIFAR-10.

Various Backbones
Pretrained Backbones are vital for downstream tasks (Ng
et al. 2024; Hao et al. 2024a,b). Table 7 presents the
performance of various baseline methods across differ-
ent backbone architectures. We evaluate the methods us-
ing ResNet-18 (He et al. 2016), ResNet-50 (He et al.
2016), ImageNet21k ViT-B/32 (Dosovitskiy et al. 2021),
and CLIP ViT-B/32 (Radford et al. 2021) as backbone net-
works. Notably, the performance improves when moving
from CNN-based architectures (ResNet-18 and ResNet-50)
to transformer-based architectures (ImageNet21k ViT-B/32
and CLIP ViT-B/32). This improvement is particularly pro-
nounced with the CLIP ViT-B/32 backbone, which is trained
on a large corpus containing image-text pairs.

Time Complexity Analysis
To delve deeper into the time complexity of KALAHash for
highlighting the efficiency and scalability of our approach,
we provide the inference time compared to LoRA (Hu et al.
2022), Bias Tuning (Zaken, Goldberg, and Ravfogel 2022),
and Prompt Tuning (Zhou et al. 2022). From Table 8, LoRA
and Bias Tuning do not alter the architecture or inputs.
They do not introduce any overhead. Prompt Tuning adds
learnable tokens, resulting in a slight increase in compu-
tational time. Our KALAHash does introduce some over-
head in Equation (6) and Equation (7), but these operations
are simple and add negligible inference time (0.01 − 0.05

Method ResNet-18 ResNet-50 ImageNet21k ViT-B/32 CLIP ViT-B/32

HashNet (Cao et al. 2017) 15.25 23.58 31.35 41.68
DSDH (Li et al. 2017) 14.27 16.24 24.50 44.22
DCH (Cao et al. 2018) 16.17 19.08 21.79 39.53
GreedyHash (Su et al. 2018) 16.01 19.26 24.24 44.87
CSQ (Yuan et al. 2020) 15.01 18.10 22.59 46.66
OrthoHash (Hoe et al. 2021) 16.01 19.73 27.56 46.68
HSWD (Doan, Yang, and Li 2022) 14.86 23.20 30.70 48.63
MDSH (Wang et al. 2023a) 16.19 18.08 24.28 47.33

Table 7: Comparison of different hashing methods using various backbone architectures.

Figure 10: Precision-Recall curves for KALAHash and baseline methods on NUS-WIDE, MS-COCO, and CIFAR-10 datasets.

Variants Inference Time (ms/per query)

LoRA 1.16
Bias Tuning 1.16
Prompt Tuning 1.19

CLoRA (N = 10) 1.17
CLoRA (N = 1, 000) 1.18
CLoRA (N = 100, 000) 1.26

Table 8: Inference time (ms) per image comparison of PEFT
techniques.

Method mAP@1000

ImageNet-100
MDSH (Wang et al. 2023a) 24.69
KALAHash 30.77
CUB-200
ConceptHash (Ng et al. 2024) 1.65
KALAHash 9.54

Table 9: mAP@1000 on ImageNet-100 and CUB-200.

ms) across various architectures. We compare the inference
times of KALAHash with other PEFT techniques, consider-
ing the knowledge pool size N , to demonstrate its efficiency.

More Results
Following Cao et al. (2017), we report mAP@1000 on the
1-shot ImageNet-100 dataset. We also ompare our method
to ConceptHash (Ng et al. 2024), the best paper award of
CVPRW24 FGVC11, on the 1-shot CUB-200 dataset. The
results are shown in Table 9.

