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ABSTRACT

Blind image super-resolution task aims at restoring high-
resolution images from their low-resolution counterparts by
reversing the unknown degradation. Existing methods have
achieved promising results when handling degradation with
isotropic or anisotropic gaussian blur, whereas suffer from
performance drop when addressing degradation with motion
blur. Compared with gaussian blur, motion blur is more di-
verse, i.e., each pixel moves a peculiar distance in distinct
orientation, thereby each pixel requires individual treatment.
To tackle this degradation with motion blur issue, we pro-
pose a novel blind image super-resolution method named
deformAble receptive Super Resolution (ArcSR), which pro-
vides deformable receptive field and unique parameters for
each pixel. Specifically, we propose Deformable Mutual con-
volution (DMconv) and Kernel Guided convolution (KGconv)
for blur kernel estimation and super-resolution, respectively.
The DMconv explores the correlation within channels of
image features and achieves deformable receptive field by
redesigning deformable convolution to generate kernels for
each pixel. Meanwhile, the KGconv views the estimated ker-
nel as an attention matrix for convolutional parameters and
gives each pixel disparate convolutional parameters to rewrite
the missing high-frequency information. Comprehensive
experiments demonstrate the superiority of our method.

Index Terms— Blind Super-resolution, Motion Blur, De-
formable Receptive Field, Customized Parameters

1. INTRODUCTION

Given a low-resolution image (LR), blind image super-
resolution (SR) methods aim to restore the high-resolution
counterpart (HR) by reversing the unknown degradation,
which commonly consists of blurriness, noise, and down-
sampling. However, since the degradation is not specified in
this situation and one LR image has plenty HR counterparts,
the reverse mapping of degradation is not unique. There-
fore, how to solve this ill-posed issue draws a great deal of
attention from academia and industry.

Existing methods [1, 2, 3, 4] have achieved remarkable
results on this field. They generally estimate [2, 4] or repre-
sent [3, 5] the degradation and super-resolve the LR image
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with it. These methods generate promising HR images when
handling gaussian blur, whereas they suffer from severe per-
formance drops when dealing with motion blur as they ignore
the motion blur. Compared with gaussian blur, motion blur
is more flexible, i.e., each pixel moves a peculiar distance in
distinct orientation and requires unique processing. Hence, a
method that can handle degradation compound with motion
blur needs to be further explored.

In this paper, we propose deformAble receptive Super
Resolution (ArcSR). As the motion blur is spatially variant
and every pixel around one pixel has an unequal influence
on it, we argue that the network should adopt an unfixed re-
ceptive field and dissimilar convolutional parameters for each
pixel, and introducing multi-head self-attention mechanism
will bring too much computational cost. To this end, we
propose Deformable Mutual convolution (DMconv) for ker-
nel estimation and Kernel Guided convolution (KGconv) for
super-resolution. Specifically, our DMconv redesigns the de-
formable convolution to simultaneously achieve unfixed re-
ceptive field and explore the correlation within channels of
image features which is proved to be useful for spatially vari-
ant blur kernel estimation [4]. Furthermore, to remove the
degradation and rewrite the missing high-frequency informa-
tion, our KGconv gives each pixel unique convolutional pa-
rameters by viewing each estimated blur kernel as an atten-
tion matrix for convolutional parameters. We conduct com-
prehensive comparison experiments and prove that ArcSR is
remarkably superior to state-of-the-art methods on existing
benchmarks. Moreover, we conduct ablation experiments and
reveal the function of our DMconv and KGconv. Our main
contributions are summarized as follows:

• To tackle the unknown degradation with motion blur
problem in blind SR task, we propose a novel blind
image super-resolution method named deformAble
receptive Super Resolution (ArcSR), which provides
deformable receptive field and unique parameters for
each pixel.

• Specifically, we propose Deformable Mutual convolu-
tion (DMconv) and Kernel Guided convolution (KG-
conv) for blur kernel estimation and super-resolution,
respectively.

• ArcSR is remarkably superior to SOTAs on existing
methods, revealing the effectiveness of our approach.
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Fig. 1. Overview of the proposed ArcSR. (a) The structure of our ArcSR. We first estimate the blur kernel through a U-net
network and then super-resolve the LR image. (b) The structure of our DMconv, which explores the correlation between the
channels of input features through deformable receptive field. (c) The structure of our KGconv, which rewrites the missing
textures by customizing unique convolutional parameters for each pixel.

2. RELATED WORK

Recently, researchers adopted bicubic downsampling as the
degradation and proposed many excellent methods [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13]. SRCNN [14] is the first method
that introduces deep learning into the field. ESPCN [12]
proposes an upsampling method named pixel-shuffle. RDN
[15] enlarges the neural network by combining Resnet and
Densenet. Nowadays, to apply the SR method in practice, re-
searchers explore real-world degradation. IKC [8] iteratively
estimates the blur kernel and correspondingly super-resolves
the LR image. DASR [5] adopts unsupervised methods
to accelerate the blind SR process. MANET [4] explores
the mutual information with the image feature for spatially
variant degradation. CMOS [2] extends MANET with the
guidance of semantic information.

However, these methods ignore the motion blur and gen-
erate HR images with severe artifacts when addressing the
degradation compound of motion blur. Compared with these
methods, our method manages to handle motion blur by cus-
tomizing treatment per pixel.

3. METHODOLOGY

3.1. Problem Formulation

Blind SR methods aim to super-resolve LR images with un-
known degradation. Mathematically, the degradation can be

formulated as:

ILR = (IHR ∗ k)↓s + n (1)

where ILR, IHR, ∗, k, s, and n represent LR image, HR
image, convolutional operation, blur kernel, downsampling
scale, and additional noise. In this paper, we focus on the sce-
nario in which the motion blur is involved in the degradation.

3.2. Our Method

3.2.1. Overview

In this paper, we propose deformAble receptive Super-
Resolution (ArcSR) and depict the overall structure in Fig.
1. As shown in Fig. 1(a), the ArcSR first estimates the blur
kernel for each pixel and then super-resolves the LR image.

For kernel estimation, we adopt a Unet structure as the
backbone and view the downsampling process as encoder and
the upsampling process as decoder. Each level in the encoder
and decoder adopts the same structure, which adopts two DM-
blocks which consist of multiple Deformable Mutual convo-
lutions (DMconv) and employs skip-connection mechanism
to avoid gradient vanishing. The details of DMconv are illus-
trated in section 3.2.2. Furthermore, to avoid the information
missing during the downsampling process, we take the addi-
tion of outputs generated by the ith level of the encoder and
the i − 1th level of the decoder as the input of the ith level



of the decoder. Hence, we estimate the blur kernel matrix
k ∈ Rks2×H×W , where ks, H , and W represent kernel size,
height of the input image, and width of the input image.

After obtaining blur kernel matrix k, our ArcSR super-
resolves the LR image with several KGblocks, and each
KGblock is equipped with one channel-wise attention block.
The KGblock rewrites the missing high-frequency informa-
tion with the assistance of estimated blur kernels and the
channel-wise attention block compels the network to give
extra attention to missing textures, which is proved to be
useful in low-level tasks (e.g., SR, image restoration [16]).
Concretely, the KGblock consists sequentially of a couple
of KGconvs and adopts the skip-connection mechanism to
aggregate the input and output of the KGblock. The details
of KGconv are illustrated in section 3.2.3. Furthermore, the
channel-wise attention block enhances features by generat-
ing attention matrices with a convolutional layer, an average
pooling layer, and a full connection layer and multiplying
with given features. After processed by multiple KGblocks
and channel-wise attention blocks, the input feature is then
upsampled by the pixel-shuffle operation and reconstructed
to HR image by a convolutional layer.

3.2.2. Deformable Mutual Convolution

To estimate the blur kernel for each pixel, we propose the
DMconv and depict the detail in Fig. 1(b). The DMconv
delves the correlation between channels of image features
with a deformable receptive field. Firstly, we split the image
feature F ∈ RC×H×W into two parts Fs ∈ RC

4 ×H×W and
F̂s ∈ R 3C

4 ×H×W along the channel dimension. Secondly, we
conduct two convolutional layers on F̂s to obtain the offset.
Thirdly, we perform deformable convolution on Fs with the
obtained offset. Finally, we concatenate Fs and F̂s and adopt
a convolutional layer to fuse the information within channels.
Specifically, to fully explore the correlation, we employ 4
DMconv layers in DMblock, and different DMconv in one
DMblock split the channel with different indexes.

3.2.3. Kernel Guided Convolution

To super-resolve the LR image with the assistance of esti-
mated blur kernels, we propose the KGconv and illustrate the
structure in Fig. 1(c). We believe that the estimated kernel
demonstrates how pixels around the center pixel influence the
center pixel and for each pixel, the proposed KGconv cus-
tomizes convolutional parameters by utilizing the estimated
kernel. Therefore, given one pixel, we view the corresponding
blur kernel as the attention matrix for convolutional parame-
ters. Specifically, we extract the corresponding blur kernel
from the estimated kernel k, reshape it to an attention matrix
∈ Rks×ks, and multiply with parameters within the convolu-
tional layer. Thereafter, we perform convolutional operation
on input features with the obtained customized parameters.

Method DMconv KGconv REDS GoPro
PSNR SSIM PSNR SSIM

Baseline % % 23.63 0.64 24.17 0.70
ArcSR (w/o DMconv) % " 23.76 0.65 24.28 0.71
ArcSR (w/o KGconv) " % 23.74 0.64 24.23 0.71

ArcSR (full) " " 24.04 0.66 24.33 0.72

Table 1. Quantitative results of ablation experiments on
DMconv and KGconv. Noise level is 0.

3.2.4. Loss Function

We adopt the L1 distance between the super-resolved HR im-
age ISR and the ground truth HR image IHR. The formula-
tion is formulated as:

L = ||ISR, IHR||1 (2)

4. EXPERIMENTS

4.1. Dataset and Metrics

We adopt REDS [17] and GoPro [18] dataset as training
set and testing set, as our method focuses on degradation
contains with motion blur and commonly used SR datasets
(e.g., set5 [19], set14 [20], BSD100 [21], Urban100 [22],
Manga109 [23, 24]) contains no motion blur kernel. Follow-
ing previous works [2, 3, 4], we adopt Peak Signal-to-Noise
Ratio (PSNR), Structural SIMilarity (SSIM), and visual per-
formance for comparison metrics.

4.2. Implemenataion Details

As for the structure of our ArcSR, we employ 4 DMconvs in
DMblock and 2 DMblocks in each level during the kernel es-
timation process. Furthermore, we also adopt 3 KGconvs in
KGblock and 8 KGblocks during the SR process. For paired
data construction, we synthetic LR images for training and
testing. Concretely, the REDS dataset provides LR images
blurred by motion blur, while the GoPro dataset does not,
thereby we downsample the GoPro dataset with bicubic in-
terpolation method and add gaussian noise on images in these
two datasets. The level of gaussian noise is set to (0.2, 20).
We also adopt a data argument strategy that crops HR image
patches with 256 × 256 and rotation them with 90, 180, and
270 degrees and correspondingly process the LR images. For
optimization, we adopt the Adam optimizer and set the learn-
ing rate to 1e -4 and β to 0.9. We train ArcSR in 4 × 105

steps and adopt multi-step learning strategy. The learning is
decreased by 0.5 at 2 × 104, 4 × 104, 8 × 104, and 2 × 105

step.

4.3. Ablation Studies

To systematically evaluate the effectiveness of each module
of our proposed ArcSR, we train the model by removing each
component and present the quantitative results on × 4 SR
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Fig. 2. Qualitative comparison on × 4 SR on GoPro dataset [18]. Our method manages to suppress the ghost edge phe-
nomenon and removes most motion blur.

Noise Level Method REDS GoPro
PSNR SSIM PSNR SSIM

0

DASR [5] 23.86 0.65 23.27 0.72
MANET [4] 23.95 0.66 23.89 0.72
UDKE [1] 23.86 0.64 23.82 0.72

ReDegNet [3] 22.56 0.65 17.80 0.66
CMOS* [2] 23.94 0.65 23.89 0.71

ArcSR (Ours) 24.04 0.66 24.33 0.73

10

DASR [5] 23.36 0.61 22.70 0.69
MANET [4] 23.45 0.63 23.39 0.72
UDKE [1] 23.47 0.61 23.47 0.71

ReDegNet [3] 18.06 0.58 17.32 0.63
CMOS* [2] 23.46 0.61 23.47 0.70

ArcSR (Ours) 23.48 0.63 23.47 0.72

Table 2. Quantitative results of × 4 SR comparison exper-
iments. Our method achieves the highest PSNR and SSIM
scores. ∗ denotes our re-implementation.

for noise-free degradation on Table 1. In the main ablation
study, we design the following ablation models: (1) Base-
line Model: we replace the DMconv with conventional con-
volution and replace the KGconv with a sequential operation
which concatenates the blur kernel and the image feature and
then performs convolutional operation on the obtained matrix;
(2) ArcSR (w/o DMconv): we replace the DMconv with con-
ventional convolution; (3) ArcSR (w/o KGconv): we replace
the KGconv with the sequential operation; (4) ArcSR (full):
our full ArcSR model.

The results demonstrate that both DMconv and KGconv
have positive influence on blind SR task. Specifically, from
the observation of ArcSR (w/o DMconv, KGconv) and ArcSR
(w/o DMconv), compared with simply concatenating esti-
mated kernels and images features together which expands
channels of features, KGconv introduces no additional pa-
rameters and gains 0.13dB and 0.11dB PSNR score on REDS
[17] and Gopro [18] datasets by utilizing estimated kernels
to customize convolutional parameters. Meanwhile, from the
observation of ArcSR (w/o DMconv, KGconv) and ArcSR
(w/o KGconv), DMconv gains 0.11dB and 0.06 dB on REDS
[17] and Gopro [18] datasets by exploring the correlation
within channels of images features with a deformable recep-
tive field. The results of ArcSR (w/o DMconv) and ArcSR
(w/o KGconv) are inferior to the full ArcSR method, verify-
ing the effectiveness of both components.

4.4. Comparison with the State-of-the-Arts

To demonstrate the superiority of our method, we conduct
comparison experiments and select state-of-the-art meth-
ods DASR [5], MANET [4], UDKE [1], RedegNet [3], and
CMOS [2] as our baselines. To be fair, we retrain these meth-
ods on GoPro [18] and REDS [17] datasets and adopt the
same training strategy as our method except RedegNet, since
RedegNet argues that neural network trained on degradation
synthesized from pairs collected from natural face images is
more robust to real-world data. Following previous methods
[4, 5], we conduct experiments on noise-free degradation and
noise degradation which the noise level of additional gaussian
noise is configured to 10.

Quantitative Results Quantitative results shown on Ta-
ble 2 demonstrate that our ArcSR achieves the state-of-the-art
PSNR and SSIM scores on degradation with motion blur.
Specifically, our method achieves the highest PSNR and
SSIM scores on both noise-free and noise degradation. Es-
pecially, when handling noise-free degradation, our ArcSR
outperforms the state-of-the-art method 0.09dB and 0.44dB
on GoPro [18] and REDS [17] datasets.

Visual Results The result of qualitative comparison is
shown on Fig. 2, compared with other baselines (e.g.,
MANET [4], UDKE [1]), our ArcSR removes the most
motion blur and manages to suppress the ghost edge phe-
nomenon.

5. CONCLUSION

In this paper, we propose a novel blind image super-resolution
method named ArcSR to address the degradation contained
motion blur issue. Specifically, we argue blur kernels of each
pixel in LR images have discrepancies and each pixel requires
individual processing. Therefore, we propose DMconv to ex-
plore the correlation within the channels of image features by
obtaining deformable receptive field. Furthermore, we pro-
pose KGconv to give each pixel unique convolutional param-
eters by viewing the estimated blur kernel as an attention ma-
trix for convolutional parameters. Sufficient ablation experi-
ments demonstrate functions of our DMconv and KGconv and
comprehensive comparison experiments prove the superiority
of our ArcSR method.
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