
LISTEN AND LOOK: MULTI-MODAL AGGREGATION AND CO-ATTENTION NETWORK
FOR VIDEO-AUDIO RETRIEVAL

Xiaoshuai Hao1,2 Wanqian Zhang2∗ Dayan Wu2 Fei Zhu1,2 Bo Li2

1 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, 100049, China
2Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China

{haoxiaoshuai, zhangwanqian, wudayan, zhufei, libo}@iie.ac.cn;

ABSTRACT
Video is a natural source of multi-modal data with intrin-
sic correlations between different modalities, such as objects,
motions and captions. Though intuitive, such inherent super-
vision has not been well explored in previous video-audio re-
trieval works. Besides, existing methods exploit the video
stream and the audio stream seperately, whereas ignoring the
mutual interactions between them. In this paper, we pro-
pose a two-stream model named Multi-modal Aggregation
and Co-attention network (MAC), which processes video and
audio inputs with co-attentional interactions. Specifically, our
method takes raw videos as inputs and extracts aggregated
features from multiple modalities to benefit the video rep-
resentation learning. Then, we introduce the self-attention
mechanism to make videos adaptively assign higher weights
to the representative modalities. Moreover, we introduce a co-
attention transformer module to better capture the relations
among videos and audios. By exchanging key-value pairs
in the multi-headed attention, this module enables video-
attended audio features to be incorporated into video repre-
sentations and vice versa. Experiments show that our method
significantly outperform other state-of-the-arts.

Index Terms— video-audio retrieval, multi-modal aggre-
gation, co-attention transformer

1. INTRODUCTION

With the rapid growth of user-generated multimedia data,
cross-modal retrieval between videos and audios, known
as video-audio retrieval, has attracted much attention [1,
2]. Contrastive learning, as the dominant paradigm for
video-audio retrieval, has delivered impressive retrieval
performances[3, 4]. It maps audio queries and the videos
in database into a joint embedding space, where the
semantically-similar audios and videos are much closer to
each other and vice versa. While producing satisfactory
results, these methods often ignore other modalities in the
videos, such as objects, motions and captions, which are in-
formative and effective for video representation learning [5].
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How to fully exploit knowledge from these experts and com-
bine these heterogeneous features in one video is still an open
problem.

Moreover, The differences between audio and video are
obvious, such as input representations, network architectures
and benchmarks. On one hand, audio classification methods
often rely on short term Fourier analysis to produce log-mel
spectrograms, which are thereafter fed into CNNs originally
designed for images [6, 4]. Contrarily, the video stream is
usually three-dimensional, and there exists the unique chal-
lenge, i.e., the high redundancy across multiple frames. This
is to some extent a counter-intuitive schema. On the other
hand, humans perceive the world by concurrently processing
and fusing multiple feelings, which can be intepreted as high
dimensional inputs such as vision and audio. While machine
learning models, in stark contrast, are typically modality-
specific and trained on unimodal benchmarks. How to bridge
the gap between video and audio modalities and further utilize
their interactions is the primary concern of this work.

In this paper, we propose a novel two-stream model
named Multi-modal Aggregation and Co-attention network
(MAC), which processes both video and audio inputs in sep-
arate streams with co-attentional interactions. As shown in
Fig. 1, we first take raw videos as inputs and extracts aggre-
gated features from multiple modalities to benefit the video
representation learning. Then, we introduce the self-attention
mechanism to make videos adaptively assign higher weights
to the representative modalities. Video and audio modalities
are highly correlated and complementary, which inspires us
to explore whether it is possible to utilize the pairwise rela-
tions between them. Thus, we further introduce a co-attention
transformer module to better capture the semantic relations
among video and audio features. By exchanging key-value
pairs in multi-headed attention, this module can not only al-
low for the independent processing in each modality, but also
enable the interactions between two modalities. Experiments
show that our method improves the mutual interactions of the
learned video-audio representations, and significantly outper-
forms other state-of-the-arts. The main contributions of this
work can be summarized as follows:
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Fig. 1: The Framework of Multi-modal Aggregation and Co-attention network(MAC). Aggregated features from multiple
modalities in video stream are extracted with a self-attention mechanism to benefit the video representation learning. Then, the
co-attention transformer module is introduced to better exploit the semantic relations among videos and audios, which not only
allows for the independent processing in each modality, but also enable the interactions between them.

• We propose a novel method named Multi-modal Ag-
gregation and Co-attention network (MAC) for video-
audio retrieval, which fully utilizes the mutual interac-
tions between vidos and audios.

• We extracts aggregated features from multiple modal-
ities with the self-attention mechanism to benefit the
video representation learning. We also introduce a co-
attention transformer module to enable video-attended
audio features to be incorporated into video representa-
tions and vice versa.

• Extensive experiments show promising retrieval perfor-
mance compared with the state-of-the-art baselines on
three datasets, indicating the superiority of our method.

2. RELATED WORK

Cross-modal video-text retrieval aims to find relevant
videos given text queries [5, 7, 8]. CE [8] adopts
video features extracted from all modalities to encode a
video. HGR [5] proposes a Hierarchical Graph Reason-
ing (HGR) model, which decomposes video-text pairs into
global-to-local levels. MMT [7] presents a multi-modal
transformer to jointly encode the different modalities in
videos. Recently, the Contrastive Language-Image Pretrain-
ing (CLIP) [9] model is widely used in video-text retrieval.
CLIP4Clip [10] investigates three mechanisms of similar-
ity calculation based on the pre-trained CLIP. Similarly,
CLIP2video [11] focuses on the spatial semantics captured
by the CLIP model. However, these works focus on learn-
ing a joint multi-modal embedding space between texts and
videos, which do not incorporate the audio stream.

Audio-Visual Representation Learning focuses on con-
necting the visual and sound data of different modalities [1,
4, 2]. AVSlowFast [1] encourages the model to capture fine-
grained temporal information by utilizing different temporal
scales of the audio and visual data. [3] learns patch-level
audio-visual correspondence by drawing positive/negative
patches iteratively along with audio-visual feature correlation.
VATT [4] takes raw signals as inputs and extracts multimodal
representations with a modality-agnostic, single-backbone

and weight-sharing transformer. CoMVT [2] proposes a vi-
sually conditioned Future Utterance Prediction (FUP) learn-
ing task, where the goal is to predict the next utterance in an
instructional video using both visual frames and transcribed
speech. Unlike the above works, we focus on the downstream
task, i.e., video-audio retrieval, which finds and retrieves the
relevant videos according to given audio queries [6].

3. METHODOLOGY

Let {(vi, ai) |vi ∈ V, ai ∈ A} be a set of videos with vi be-
ing the visual representation of the ith video and ai the cor-
responding audio description. Our goal of video-audio re-
trieval is to learn a pair of functions ϕ (v) and ψ (a) to map
videos and audio descriptions into a joint embedding space, in
which embeddings for matched audio descriptions and videos
should lie close together and vice versa. Next, we elaborate
details of the video and audio embeddings, the co-attention
transformer module and the loss function.

3.1. Video Embedding

In order to make full use of the information in one video,
we draw on a collection of pre-trained models to extract
video features from different modalities. These opera-
tions project the video to a collection of N modality fea-
tures

{
I
(1)
var, ..., I

(i)
var, ..., I

(N)
var

}
, where I(i)var represents the ith

modality feature and subscript var denotes a variable-length
output. Each element is then aggregated along its temporal
dimension, producing fixed-length video feature embeddings
per video

{
I(1), ..., I(i), ..., I(N)

}
. Next, we apply linear pro-

jections to transform these time-aggregated embeddings into
a common dimensionality. Thus, extracted video embed-
dings can be written as V = {Ii}Ni=1. To further combine
multiple modality features, we adopt two successive fully-
connected layers as the attention weighting function, which is
a straightforward way considering the relations between mul-
tiple modalities. By assigning different weights to different
modality features, we can finally obtain discriminative video
embeddings.



3.2. Audio Embedding

Audios can exert influences on videos in various cases. For
example, ‘playing piano’ is the scenario where sound domi-
nates, while ‘humming a tune’ is the scenario where the ac-
tion itself is difficult to detect in videos. Inspired by [6], we
adopt the QuerYD dataset to obtain the audio embeddings.
QuerYD [6] is gathered from user-contributed descriptions
provided by the YouDescribe community 1, which contribute
audio descriptions to videos hosted on YouTube to assist the
visually-impaired persons. Then, a portion of these audio de-
scriptions is further accompanied by user-provided transcrip-
tions. To handle cases in which such a transcription is not pro-
vided, we use the Google Speech-to-Text API 2 to transcribe
audio descriptions. These word embeddings are then aggre-
gated into a single audio vector to obtain the entire audio de-
scription using the NetVLAD aggregation module [12]. After
the aggregation, we project the aggregated audio vector to the
separated subspaces for each video feature using Gated Em-
bedding Module (GEM). The audio representation consisting
of N embeddings can thus be written as A = {ψi}Ni=1.

3.3. Co-Attention Transformer Module

We argue intuitively that lower layers are involved in pro-
cessing low-level features, while higher layers are focused
on learning semantic concepts. Note that humans learn
to understand audios, recognize visions, and identify their
correspondences by learning patterns in what they see and
hear [1, 4, 2]. However, previous methods have developed
video-audio models only capable of generating unimodal fea-
tures seperately on specific benchmarks.

Thus, we introduce a Co-Attention Transformer module
(CAT) to learn the interactive information between audio fea-
tures and video features. CAT encourages the whole model to
optimize the representations with respect to the mutual inter-
actions [13]. Specifically, CAT consists of two streams, i.e.,
video embeddings V = {Ii}Ni=1 ∈ RN×D and audio em-
beddings A = {ψi}Ni=1 ∈ RN×D. As in Fig. 2, the whole
CAT module computes query, key and value matrices as in
a standard transformer block. Note that the keys and values
from each modality are passed as inputs to the other modal-
ity’s multi-headed attention block. Consequently, the atten-
tion block produces attention-pooled features for one modal-
ity conditioned on the other, i.e., performs video-conditioned
audio attention in the visual stream and audio-conditioned
video attention in the audio stream.

For the video stream, we compute key
(
K̄
)
-value

(
V̄
)

pairs based on audio features and query
(
Q̄
)

based on video
features. The scaled dot-product attention is then calculated

1https://youdescribe.org/
2https://cloud.google.com/speech-to-text
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Fig. 2: Illustration of the introduced co-attention transformer
module.

by:

Vattn = softmax

(
Q̄K̄

T

√
d

)
V̄ , (1)

where Vattn is a weighted sum of values (audio features), and
the weight of each value is calculated based on its interaction
with the video features Q̄. The final video representation can
be written as φ (V ) = Vattn + V .

For the audio stream, we compute key
(
K̃
)

-value
(
Ṽ
)

pairs based on video features and query
(
Q̃
)

based on the
audio features. Similarly, the scaled dot-product attention is
then calculated by:

Aattn = softmax

(
Q̃K̃

T

√
d

)
Ṽ , (2)

whereAattn is a weighted sum of values (video features), and
the weight of each value is calculated based on its interaction
with the audio features Q̃. The final audio representation can
be written as ψ (A) = Aattn +A.

Note that we restrict early layers of the network to focus
on unimodal processing, while only introduce cross-modal
connections at later layers. The intuition is that low-level vi-
sual features such as edges and corners may not have a partic-
ular audio signature, therefore fail to benefit from early fusion
with audios. To this end, the proposed CAT module can not
only allow for the independent processing in each modality,
but also enable the interactions between two modalities.

3.4. Loss Function

To train the model, we adopt the simple yet effective bi-
directional hard-negatives ranking loss for cross-modal se-



Table 1: Comparison of video-audio retrieval methods trained with paragraph-level information on the QuerYD dataset.

Method Audio-to-Video Retrieval Video-to-Audio Retrieval rsumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
E2EWS [14] 13.5 27.5 34.5 35 12.4 23.8 30.8 33 142.5
MoEE [15] 11.6 30.2 43.2 14.2 13.0 30.9 43.0 14.5 171.9
CE [8] 13.9 37.6 48.3 11.3 13.7 35.2 46.9 12.3 195.6
MAC 16.6 39.8 52.5 9 17.3 39.8 50.7 10 216.7

Table 2: Comparison of localisation methods trained with oracle temporal proposals information on the QuerYD dataset.

Method Audio-to-Video Retrieval Video-to-Audio Retrieval rsumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
E2EWS [14] 6.7 14.7 20.4 133 8.4 15.4 19.8 154.5 85.4
MoEE [15] 19.0 38.9 47.9 12 19.8 39.6 47.6 13 212.8
CE [8] 18.2 38.1 46.8 13.3 18.1 37.3 45.9 14 204.4
MAC 19.9 41.6 50.3 10 20.1 40.7 50.2 10 222.8

mantic embedding [16, 17], which can be formulated as:

L =
1

B

B∑
i=1

∑
j 6=i

[max (0, m+ ŝi,j − si,i)

+ max (0, m+ ŝj,i − si,i)],

(3)

where B is the batch size, m is the margin value and si,j =
s(ψ (Ai) , φ (Vj)) is the similarity score of audio description
Ai and video Vj . ŝi,j and ŝj,i indicate a negative text pair for
V and a negative video pair for A, respectively.

4. EXPERIMENTS

4.1. Experimental Settings

Datasets. We carry out experiments on QuerYD [6], AU-
DIOCAPS [18] and CLOTHO [19] datasets. QUERYD [6]
is a dataset of described videos sourced from YouTube and
the YouDescribe platform. It is accompanied by audio de-
scriptions that are provided with the explicit aim of convey-
ing the video content to visually impaired users. Therefore,
the provided descriptions focus heavily on the visual modal-
ity. The training, validation and test partitions of the dataset
are the same as in prior works [6]. AUDIOCAPS [18] is a
dataset of sounds with event descriptions that was introduced
for the task of audio captioning, where sounds are sourced
from the AudioSet dataset [20]. We follow the standard split
with 49,291 training, 428 validation, and 816 testing sam-
ples in the official split. CLOTHO [19] is a dataset of de-
scribed sounds introduced for the task of audio captioning,
with sounds sourced from the Freesound platform 1. We use
the training and validation set with 2,314 and 579 samples,
respectively.

Evaluation Criteria We adopt standard retrieval metrics
(following [6]) to evaluate the performance of video-audio re-
trieval. We measure rank-based performance by R@K (higher

1https://freesound.org/

is better) and Median Rank, i.e., MR, (lower is better). We
also report the sum of R@1, R@5 and R@10 as Sum of Re-
calls.

4.2. Implementation Details

We adopt the Adam optimizer for all our experiments, and set
the margin of the bi-directional hard-negatives ranking loss to
0.3. Inspired by [6], we also freeze our pre-trained models for
video feature extraction. We set N=4 and extract video fea-
tures of scene, sound, object and action, which are publicly re-
leased by [8]. To be specific, for scene, object and action, we
average frame-level features along the temporal dimension to
produce a single feature vector per video. For sound features,
we adopt the NetVLAD mechanism, which has proven ef-
fective for the video-text retrieval [8]. All aggregated video
features are projected to the same size as 768 before fed into
the co-attention transformer module (i.e., D=768). Moreover,
we utilize one self-attention layer and four attention heads for
the co-attention transformer module. For QuerYD paragraph-
level video-audio retrieval task and clip localisation task, we
set the batch size to 128, learning rate to 0.01, and weight
decay to 1e-3.

4.3. Comparision with state-of-the-arts

In this section we demonstrate the application of QuerYD to
two video understanding tasks: paragraph-level video-audio
retrieval and clip localisation. We consider three models:

The E2EWS (End-to-end Weakly Supervised) model pro-
posed by [14] is a cross-modal retrieval model. We use the
video and text encoders without any form of fine-tuning on
QuerYD, providing a calibration of task difficulty.

The MoEE (Mixture of Embedded Experts) model pro-
posed by [15] comprises a multi-modal video model in com-
bination with a system of context gates that learn to fuse to-
gether different pretrained ‘experts’ to form a robust cross-
modal text-video embedding.
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(b) Clip localisation task
Fig. 3: Ablation study on the proposed CAT module.
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Fig. 4: Illustration of the differences between multiple experts
in videos.

The CE (Collaborative Experts) model proposed by [8]
similarly learns a cross-modal embedding by fusing together
a collection of pretrained experts to form a video encoder.
It uses a relation network sub-architecture to combine to-
gether different modalities, and represents the state-of-the-art
on several retrieval benchmarks.

Table 1 compares the proposed MAC model with SOTA
methods on the paragraph-level video retrieval task. For fair-
ness, all methods adopt the same four pretrained experts for
scene classification, action recognition, sound classification
and image classification described in [8]. We can find that
our method performs best and consistently outperforms state-
of-the-art methods. For instance, it outperforms the SOTA
model CE [8], and sum of recalls is increased from 195.6 to
216.7 on the paragraph-level video retrieval task.

Moreover, to demonstrate the robustness of our approach
on different tasks, we further provide results on clip locali-
sation task in Table 2. Event localisation is a task that aims
to retrieve a specific temporal segment from a video given a
natural language text description. We can see that our MAC
model achieves consistent improvements, with 9.3%, 9.1%
and 7.5% relative improvements compared with CE in R@1,
R@5 and R@10, respectively. In a nutshell, MAC verifies
the effectiveness of interactive information between video and
audio modalities.

4.4. Ablation Study

Effect of co-attention transformer module. To evalu-
ate the contribution of co-attention transformer module, we

Table 3: Generalization to text-audio retrieval tasks.

Benchmark Text→Audio Audio→Text
R@1 R@10 R@1 R@10

AUDIOCAPS
MoEE [15] 22.5 70.0 25.7 73.0

CE [8] 22.9 70.2 26.1 72.7
MAC(ours) 23.9 74.2 28.8 76.0
CLOTHO
MoEE [15] 5.1 30.1 6.3 29.9

CE [8] 5.8 31.3 7.3 32.8
MAC(ours) 6.4 33.0 7.7 33.9

removes the co-attention transformer module from the full
MAC and present the results in Fig. 3. We can find that
the full MAC method achieves 12.16% relative improve-
ments compared with MAC(w/o.CAT) method in R@1 on
the paragraph-level video retrieval task. Similarly, full MAC
method achieves 15.69% relative improvements compared
with MAC(w/o.CAT) method in R@1 on the clip localisa-
tion task. We argue that MAC(w/o.CAT) is inferior to the full
MAC method, indicating the proposed module contributes to
generating modality-agnostic and discriminative features in
the video-audio retrieval task.

Comparison of the different experts. In Fig. 4, we show
an ablation study when training our model on paragraph-level
video retrieval task using only one expert (left), and using
all experts but one (right). In the case of using only one ex-
pert, we note that the object expert provides the best results.
We owe the poor performance of sounds to the fact that they
are often absent, thus resulting in a zero vector input to our
video encoder. While the scene expert shows a decent perfor-
mance, if used alone, it does not contribute when combined
with others, which might due to the semantics it encodes have
already been captured by other experts like appearance or mo-
tion. Though the sound expert alone does not provide a good
performance, it contributes the most when used in conjunc-
tion with the others. We owe this to the complementary cues
it provides when compared to the other experts.

Generalization to different tasks. To verify that our
method can be easily generalized to different tasks, as shown
in Table 3, we generalized MAC to text-audio retrieval task
on two datasets, i.e., AUDIOCAPS [18] and CLOTHO [19]
datasets. We can find that our method performs best and
consistently outperforms state-of-the-art methods on two text-
audio datasets.

5. CONCLUSION

In this paper, we have proposed Multi-modal Aggregation and
Co-attention network (MAC) to process video and audio in-
puts with co-attentional interactions. To benefit the video
representation learning, we extract aggregated video fea-



tures from multiple modalities with the self-attention mecha-
nism. Moreover, to better capture the relations among videos
and audios, we introduce a co-attention transformer module,
which can not only allow for the independent processing in
each modality, but also enable the interactions between two
modalities. Experiments on three video-audio benchmarks
have demonstrated that our method achieves significant im-
provements compared to the state-of-the-arts.
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