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ABSTRACT
Cross-modal retrieval between videos and texts has attracted grow-
ing attention due to the rapid growth of user-generated videos
on the web. To solve this problem, most approaches try to learn
a joint embedding space to measure the cross-modal similarities,
while paying little attention to the representation of each modality.
Video is more complicated than the commonly used visual feature,
since the audio and caption on the screen also contain rich infor-
mation. Recently, the aggregations of multiple features in videos
boost the benchmark of the video-text retrieval system. However,
they usually handle each feature independently, which ignores the
interchange of high-level semantic relations among these multi-
ple features. Moreover, despite the inter-modal ranking constraint
where semantically-similar texts and videos should stay closer, the
modality-specific requirement, i.e. two similar videos/texts should
have similar representations, is also significant. In this paper, we pro-
pose a novel Multi-Feature Graph ATtention Network (MFGATN)
for cross-modal video-text retrieval. Specifically, we introduce a
multi-feature graph attention module, which enriches the repre-
sentation of each feature in videos with the interchange of high-
level semantic information among them. Moreover, we elaborately
design a novel Dual Constraint Ranking Loss (DCRL), which si-
multaneously considers the inter-modal ranking constraint and
the intra-modal structure constraint to preserve both the cross-
modal semantic similarity and the modality-specific consistency
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in the embedding space. Experiments on two datasets, i.e. MSR-
VTT and MSVD, demonstrate that our method achieves significant
performance gain compared with the state-of-the-arts.
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1 INTRODUCTION
With the exponential growth of user-generated videos on the Inter-
net, cross-modal retrieval between video data and natural language
descriptions, known as video-text retrieval, has attracted much
attention. The goal of video-text retrieval is to retrieve and rank
the videos in the database according to the query text given by
users. To achieve it, the current dominant paradigm for video-text
retrieval [9, 10, 26, 30] tries to map the queries and the videos into
a joint embedding space, where the semantically-similar texts and
videos are much closer to each other and vice versa.

Most existing methods are adopted from the image-text embed-
ding methods, which focus on the visual representation of videos.
Some researchers [4, 5, 7, 16, 31, 32, 32, 35, 40, 42, 43] struggle to
find a representative video frame, and then feed it into the image-
text model for video-text retrieval. However, other rich information
in the videos effective for video-text retrieval is ignored. Given a
query like ‘a little girl reacting to a video of President Obama giving
a speech’, satisfactory results are difficult to be retrieved without
the audio or the caption on the screen.
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Figure 1: Illustration of the differences between handle each
feature independently and the proposed method. The pro-
posed method considers the interchange of high-level se-
mantic information among multiple features and success-
fully retrieves the correct video given an complex query.

Recently, feature aggregation methods greatly boost the bench-
mark of video-text retrieval, which make use of different features in
videos like object, motion, audio, and caption on the screen. How-
ever, they usually handle each feature independently, which ignores
the interchange of high-level semantic information among these
multiple features. Leveraging the interchange information among
different features is of great importance to build effective video
representations. As illustrated in Figure 1, given a complex query
like ‘A man is making a speech in front of the crowd’, neither of
the features ‘appearance’, ‘motion’ or ‘audio’ can fully describe the
scene. On the contrary, when these features are processed together,
the higher-level semantics can be obtained. How to fully exploit
the rich and heterogeneous information in videos is still an open
problem, which is also the primary motivation of this paper.

Moreover, all existing works train the embedding network by
considering the inter-modal constraint to make the semantically-
similar texts and videos much closer to each other and vice versa.
Ideally, a good embedding space should also satisfy the require-
ment that similar videos/texts should stay closer. Thus, we argue
that preserving this modality-specific characteristic is essential for
learning the embedding space.

In this paper, we propose a novel Multi-Feature Graph ATten-
tion Network (MFGATN). Specifically, we devise a multi-feature
graph attention module, which enriches the representation of each
feature with the interchange of high-level semantic information
among multiple features. Besides, we elaborately design a novel
Dual Constraint Ranking Loss (DCRL) that simultaneously consid-
ers the inter-modal ranking constraint and the intra-modal struc-
ture constraint. In light of the proposed DCRL, we can preserve
the modality-specific characteristics in the embedding space to
further improve retrieval performance. With our MFGATN, not
only more target videos can be retrieved, but also similar videos
are ranked higher than other irrelevant videos as they are mapped
closer in the embedding space. To show the effectiveness of the
proposed MFGATN, we conduct experiments on two benchmark
datasets. The MFGATN method achieves 21% and 17.6% relative

improvements on R@1 compared with the state-of-the-art method
on the MSR-VTT and the MSVD datasets, respectively. The main
contributions of this work can be summarized as follows:

• We propose a novel Multi-Feature Graph Attention Network
to aggregate multiple features in videos. By interchanging
information among them, we can obtain more effective video
representations.

• We elaborately design a novel Dual Constraint Ranking
Loss (DCRL) that simultaneously considers the inter-modal
ranking constraint and the intra-modal structure constraint,
which makes both the semantically-similar video-text and
the similar samples in each modality stay closer in the em-
bedding space. To our best knowledge, this is the first loss
function in video-text retrieval to preserve modality-specific
characteristics.

• Our method achieves 21% and 17.6% relative improvements
on R@1 compared with the state-of-the-art method on the
MSR-VTT and the MSVD datasets, respectively.

2 RELATEDWORK
2.1 Image-Text Retrieval
Recently, there has been increasing interest in learning robust
visual-text embeddings for image-text retrieval [8–10, 12, 14, 18, 19,
26, 29, 36, 41]. Frome et al. [9] firstly propose a method to project
words and visual contents into a joint space by a ranking loss
that punishes the condition when a unmatched word is ranked
higher than the matched one. Faghri et al. [8] modify the pairwise
ranking loss based on violations caused by the hard-negatives (i.e.,
unmatched query closest to each training query) and has been
shown to be effective in the retrieval task. Kiros et al. [14] extend
the framework to encode images with CNN and sentences with
RNN. Then, the following image-text retrieval methods adopt a sim-
ilar approach with slight modifications in the input representations.
In [26], authors propose a multi-modal attention mechanism to
attend to sentence fragments and image regions selectively for sim-
ilarity calculation. To enrich global representations, Gu et al. [10]
further incorporate image and caption generation in a multi-task
framework.

2.2 Video-Text Retrieval
Concept-based approaches [33, 38, 39] extract relevant concepts
from queries and videos, and accordingly establish associations
between these two modalities. The majority of the top-ranked solu-
tions for TRECVID challenge belong to concept-based approaches
[15, 21]. However, it is usually ineffective for complex long queries,
since it is very difficult to describe the rich sequential information
within both videos and queries using a few selected concepts.

Embedding-based approaches [1, 7, 11, 13, 17, 20, 25, 28] try to
directly encode videos and texts into a common space. Many of
these existing approaches [4, 7, 17] are inspired by the image-text
embedding methods. Dong et al. [7] propose a dual multi-level
encoding for both videos and queries. Chen et al. [4] propose a
Hierarchical Graph Reasoning (HGR) model, which decomposes
video-text into global-to-local levels. However, these methods do
not take advantage of the rich and diverse information presented in
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Figure 2: The Framework of Multi-Feature Graph Attention Network for video-text retrieval. Our proposed framework con-
sists of three components: 1) the video embedding component adopts multi-feature graph attention module to enrich the
representation of each feature with the interchange of high-level semantic information among multiple features. 2) the text
embedding component encodes the query sentence into a single vector representation, and then projects it to separated sub-
spaces for each video feature. 3) the joint embedding component learns the final multi-modal embedding space with the the
inter-modal ranking constraint and the intra-modal structure constraint.

videos, such as objects, actions, faces, their combinations. Recently,
it is widely studied that how to effectively aggregate the multiple
features available in videos into a compact video representation.
Mithun et al. [25] propose the JEMC framework using action, object,
text and audio features to compute three corresponding text-video
similarities. Miech et al. [23] propose a new model for learning a
joint text-video embedding called Mixture-of-Embedding-Experts
(MoEE), where the overall similarity is obtained as a weighted sum
of each expert’s similarity. Liu et al. [20] further adopt all video
features and use a collaborative gating mechanism for modulating
each expert feature according to the other experts. However, most of
the existing methods ignore the interchange of high-level semantic
information among multiple features, which is the major concern
of our work.

2.3 Loss Function
Many prior methods require the inter-modal ranking constraint
to make the semantically-similar texts and videos much closer to
each other and vice versa. Miech et al. [23] adopt bi-directional
max-margin ranking loss (Bi-MMRL) [20, 23] to train the video-text
cross-modal embedding network. They minimize a hinge-based
triplet ranking loss combined with the bi-directional ranking terms,
which maximizes the similarity between a video embedding and the
corresponding text embedding, and at the same time, minimizes the
similarity to all other unmatched ones. Recently, focusing on hard-
negatives is effective in many embedding tasks[8, 27]. Inspired by
this, a fewmethods adopt bi-directional hard-negatives ranking loss
(Bi-HNRL) [4, 7, 25] for this task to emphasize the hardest negatives,
where the penalties incurred by the hardest negatives instead of all
the negatives are considered. However, only considering the inter-
modal ranking constraint will lead to a decrease inmodality-specific

characteristics. To address this problem, we elaborately design a
novel dual constraint ranking loss function that simultaneously
considers the inter-modal ranking constraint and the intra-modal
structure constraint.

3 METHODOLOGY
Given a video V and a query text T , we try to create a pair of
functions ϕ (V ) and ψ (T ) mapping videos and texts into a joint
embedding space, in which embeddings for matched texts and
videos should lie close together, while embeddings for mismatched
texts and videos should lie far apart. As illustrated in Figure 2, our
proposed framework consists of three components: 1) the video
embedding component extracts multiple features of videos and
obtains fixed-length video feature vectors by temporal aggregation
module, and then leverages multi-feature graph attention module
to enrich the representation of each feature with the interchange
of high-level semantic information among multiple features. 2) the
text embedding component encodes the query sentence into a single
vector representation, and then projects it to separated subspaces
for each video feature. 3) the joint embedding component learns
the final multi-modal embedding space with the the inter-modal
ranking constraint and the intra-modal structure constraint.

3.1 Video Embedding
Feature Extraction: In order to make full use of the information
in one video, we draw on a collection of pre-trained models to
extract different video features. These operations map the video to
a collection ofM video feature embeddings

{
I
(1)
var , ...., I

(M )
var

}
. I (i)var

represents the i-th video feature (subscript var denotes a variable-
length output when applied to a sequence of frames). In this paper,
we setM=6, and extract features for object, motion, audio, speech,
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OCR , face. We use the features publicly released by [20]. Note that
our method can be easily extended to more features if required.
Each element of this collection is then aggregated along its tem-
poral dimension, producing a fixed-length embedding per video{
I (1), .., I (M )

}
. For temporal aggregation function, we adopt a sim-

ple approach to aggregate the features. For object, motion, face
embeddings, we average the frame-level features along the tem-
poral dimension to produce a single feature vector per video. For
speech, audio, OCR features, we adopt the NetVLAD mechanism
proposed by Arandjelovic [2], which has been proven effective for
the retrieval task [20].

Multi-Feature Graph Attention Module: Once the time ag-
gregated embeddings are obtained, we apply linear projections to
transform these embeddings into the same dimensionality. These
projected video feature embeddings can be written as:

H = {h1,h2, ...,hM } , (1)

where hi ∈ RF , and F is the number of features.
To aggregate these multiple features, we first construct a multi-

feature graph for each video. Specially, we assume that each video
is represented by a set of nodes,H = {h1, ...,hM }. Each node stands
for a high-level video feature. To enrich the representation of each
feature with the interchange of high-level semantic information
among multiple features, we propose a multi-feature graph atten-
tion module (MFGAT).

Once a multi-feature graph is obtained, we then perform self-
attention on the nodes−a shared attentional mechanism a : RF ×

RF → R computes attention coefficients:

ei j = a
(
hi ,hj

)
, (2)

which shows the significance of node j to node i . In this paper, the
module allows every node to attend on all the nodes.

We perform masked attention on the graph structure—we only
compute ei j for all the neighbors of node i in the graph. To make the
coefficients easily comparable across different nodes, we normalize
them using the softmax function:

αi j = softmaxj
(
ei j

)
=

exp
(
ei j

)∑
k ∈Ni exp (eik )

. (3)

where Ni are the neighbors of node i in the graph.
In ourmodel, the proposed attentionmechanism a is a single−layer

neural network, which can be easily parametrized with a weight
vector ®a ∈ R2F , as well as the LeakyReLU non-linearity. The coef-
ficients computed by the attention mechanism then is expressed
as:

αi j =
exp

(
LeakyReLU

(
®aT

[
hi ∥ hj

] ))∑
k ∈Ni exp

(
LeakyReLU

(
®aT [hi ∥ hk ]

) ) , (4)

where ∥ denotes the concatenation operation.
Once the attention coefficients obtained, they are used to com-

pute a linear combination of the features propagated to them, to
produce the final output features for each node:

h′i = σ
©«
∑
j ∈Ni

αi jhj
ª®¬ + hi . (5)

Based on it, we obtain the new video features V =
{
h′i
}M
i=1,

which are enriched with the interchange of high-level semantic
information amongmultiple features. The final video representation
is then obtained by passing the modulated response of each video
feature embedding through a Gated Embedding Module (GEM) [22]
before concatenating the outputs together into a single fixed-length
vector.

3.2 Text Embedding
Given a query sentence, we first propagate each word into the
word2vec [24]model trained byGoogle News1 to achieve their word
embeddings. Then, all the word embeddings are passed through a
pre-trained OpenAI-GPTmodel to extract the context-specific word
embeddings. These word embeddings are then aggregated into a
single sentence vector to obtain the entire sentence embedding
using the NetVLAD [2] aggregation module. After the aggrega-
tion, we project the aggregated sentence vector to the separated
subspaces for each video feature using Gated Embedding Module
(GEM) [22]. The text representation then consists ofM embeddings,
represented by T =

{
ψ i }M

i=1.

3.3 Joint Embedding Learning
In this subsection, we introduce the Dual Constraint Ranking Loss
(DCRL) in detail, which simultaneously considers the inter-modal
ranking constraint and the intra-modal structure constraint.

Inter-modal ranking constraint: Existing works train the em-
bedding network with the only consideration of the ranking con-
straints between modals, which makes the semantically similar
texts and videos become closer and vice versa. While bridging the
gap between an anchor and a positive sample, inter-modal rank-
ing constraint can also maximize the distance between an anchor
and a negative sample. The expression of the inter-modal ranking
constraint of a video is as follows:

d (Vi ,Ti ) +m < d
(
Vi ,Tj

)
, (6)

where, Vi (anchor) and Ti (positive sample) are the feature em-
beddings in the joint embedding space for the i-th video and text.
Tj (negative sample) refers to the j-th text. d (V ,T ) indicates the
distance between two feature embeddings in the joint embedding
space, andm indicates a margin constant. Analogously, given a text
input, we set the inter-modal ranking constraint as follows:

d (Ti ,Vi ) +m < d
(
Ti ,Vj

)
. (7)

In this triplet selection, there are two methods: the bi-directional
max-margin ranking loss (Bi-MMRL), which calculates for all nega-
tives; and the bi-directional hard-negatives ranking loss (Bi-HNRL)
only the penalty incurred by the hardest negatives is considered.
We adopt the Bi-HNRL as it has been proved more effective [7].

Intra-modal structure constraint: During the whole training
procedure, if we only utilize the inter-modal ranking constraint,
inherent characteristics within eachmodality (i.e., modality-specific
characteristics) will be lost. To solve this problem, we devise a novel
intra-modal structure constraint.

Suppose there are three samples (videos or texts), we can extract
features using the process described in Section. 3.1 or Section. 3.2.

1https://code.google.com/archive/p/word2vec/
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Figure 3: Embedding space with (top) and without (bot-
tom) intra-modal structure constraint. By leveraging the
intra-modal structure constraint, we can preserve modality-
specific characteristics in the joint embedding space (best
viewed in color).
Since deep features are not been fed into the joint embedding net-
work, they can be used measure the modality-specific similarities.
As Fig. 3 show, in the video space, blue is more similar to purple
than green. In the text space, blue is more similar to sky-blue than
yellow. By leveraging the intra-modal structure constraint in the
embedding space, we can preserve modality-specific characteristics
after the joint embedding process. The intra-modal structure con-
straint between samples is a soft relationship. When defining the
intra-modal structure constrain, we do not use the margin constant.
The expression of our proposed intra-modal structure constraint
for a video is as follows:

d
(
Vi ,Vj

)
< d (Vi ,Vk ) , i f d

(
Ṽi , Ṽj

)
< d

(
Ṽi , Ṽk

)
, (8)

where Vi , Vj , Vk are the video embeddings in the joint embedding
space from i-th, j-th and k-th video, respectively. Ṽi , Ṽj , Ṽk are the
video features from i-th, j-th and k-th in the original video space.
Analogously, given a text input, we set the intra-modal structure
constraint as follows:

d
(
Ti ,Tj

)
< d (Ti ,Tk ) , i f d

(
T̃i , T̃j

)
< d

(
T̃i , T̃k

)
, (9)

where Ti , Tj , Tk are the text embeddings in the joint embedding
space from i-th, j-th and k-th text, respectively. T̃i , T̃j , T̃k are the
text features from i-th, j-th and k-th text in the original text space.

Dual Constraint Ranking Loss (DCRL): Here, we can pro-
pose a simple yet effective ranking loss by the combination of
the inter-modal ranking constraint and the proposed intra-modal
structure constraint.

Assume there are one batch of text-video pairs, we have N pairs
of embedded features (Vi ,Ti ). Here,Vi andTi are the feature embed-
dings for the video and text in the i-th text-video pair in the joint
embedding space. In light of the inter-modal ranking constraint,
two difference types of triplets

(
Vi ,Ti ,Tj

)
and

(
Ti ,Vi ,Vj

)
can be

constructed, where i , j. For the intra-modal structure constraint,
we adopt two difference types of triplets

(
Vi ,Vj ,Vk

)
and

(
Ti ,Tj ,Tk

)
,

where i , j , k . Taking all these triplets into consideration, the
Dual Constraint Ranking Loss (DCRL) can be written as:

L =
∑
i ,j

max
(
0, VT

i Tj −VT
i Ti +m

)
+

∑
i ,j

max
(
0, TTi Vj −TTi Vi +m

)
+ λ


∑
i,j,k

Ci jk (V )

(
VT
i Vj −VT

i Vk

)
+

∑
i,j,k

Ci jk (T )
(
TTi Tj −TTi Tk

) ,
(10)

where, λ balance the impact of intra-modal structure constraint.
The function C (·) in Eq. 10 can be written as::

Ci jk (x) = siдn
(
xTi xk − xTi x j

)
− siдn

(
x̃Ti x̃k − x̃Ti x̃ j

)
, (11)

where xi , x j and xk are the feature embeddings in the joint embed-
ding space and x̃i , x̃ j and x̃k are intra-modal features in the original
space. As stated above, the intra-modal structure constraint is soft.
Hence, we replace real distance values with the siдn function when
introducing the intra-modal structure constrain Eq. 8 and Eq. 9 to
the final loss funtion.

4 EXPERIMENTS
In this section, we first describe the datasets and evaluation metric
in Sec. 4.1. Then, we describe the implementation details in Sec. 4.2.
A comprehensive comparison of two video-text retrieval benchmark
datasets is reported in Sec. 4.3. We report the ablation studies to
further demonstrate the efficiency of our method in Sec. 4.4. Finally,
extensive qualitative results are also presented in Sec. 4.5.

4.1 Datasets and Evaluation Metrics
MSR-VTT: The MSR-VTT [34] is a benchmark dataset for video-
text retrieval. Originally developed for video captioning, the MSR-
VTT dataset consists of 10k web video clips and 200k natural sen-
tences which describe the semantic content of the clips. Each clip
is assigned with 20 sentences. For a fair comparison, we follow the
same data partitions in [25], which is the first work reporting video
retrieval performance on the MSR-VTT dataset. Specifically, we use
6,513 clips for training, 497 clips for validation, and the remaining
2,990 clips for testing.

MSVD: The MSVD [3] dataset contains 1,970 Youtube clips, of
which each video is annotated with about 40 sentences. For a fair
comparison, we use the same data splits utilized in prior works
[20], with 1,200 videos for training, 100 videos for validation, and
670 videos for testing.

Evaluation Metrics To evaluate the proposed method on the
video-text retrieval task, we adopt the widely used evaluation met-
rics in most previous methods. R@K and Median Rank (Med R) are
adopted to measure the rank-based performance. R@K denotes the
percentage of test queries, which means one relevant item at least
can be found among the top-K returned results. In this paper, we
report results for R@1, R@5, and R@10. Med R denotes the median
rank of the first relevant item in the returned results. Results with
higher R@K and lower Med R are better. Moreover, the sum of R@1,
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Table 1: Video-to-Text and Text-to-Video retrieval results on the MSR-VTT dataset. The proposed method performs the best.

Method Text-to-Video Retrieval Video-to-Text Retrieval rsumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
Single-feature method
VSE [8] 5.0 16.4 24.6 47 7.7 20.3 31.2 28 105.2
VSE++ [8] 5.7 17.1 24.8 65 10.2 25.4 35.1 25 118.3
W2VV [6] 6.1 18.7 27.5 45 11.8 32.1 42.4 16 138.6
Dual Encoding [7] 7.7 22.0 31.8 32 13.0 30.8 43.3 15 148.6
HGR [4] 9.2 26.2 36.5 24 15.0 36.7 48.8 11 172.4
Multi-feature method
JEMC [25] 7.0 20.9 29.7 38 12.5 28.9 39.1 21 138.1
Simple Concatenation 9.4 26.9 37.9 20 15.1 38.0 51.0 10 178.3
MoEE [23] 9.7 28.7 40.6 17 14.8 40.9 54.8 8 189.5
CE [20] 10.0 28.8 40.4 16 16.5 43.5 56.8 7.5 196.0
MFGATN 12.1 32.9 45.2 13 21.4 51.2 64.8 5 227.6

Table 2: Video-to-Text and Text-to-Video retrieval results on the MSVD dataset. The proposed method performs the best.

Method Text-to-Video Retrieval Video-to-Text Retrieval rsumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
Single-feature method
ST [14] 2.6 11.6 19.3 51 2.99 10.9 17.5 77 64.89
LJRV [37] 7.7 23.4 35.0 21 9.85 27.1 38.4 19 141.45
VSE [8] 12.3 30.1 42.3 14 15.8 30.2 41.4 12 172.1
VSE++ [8] 15.4 39.6 53.0 9 21.2 43.4 52.2 9 224.8
Multi-feature method
JEMC [25] 20.3 47.8 61.1 6 31.5 51.0 61.5 5 273.2
Simple Concatenation 18.2 45.1 60.4 7 20.6 48.2 59.0 6 251.5
MoEE [23] 19.1 46.9 62.4 6 23.1 51.9 62.8 5 266.2
CE [20] 19.3 47.2 62.6 6 23.4 50.4 61.5 5.5 264.4
MFGATN 22.7 55.1 69.3 4 27.8 55.8 66.9 4 297.6

R@5, and R@10, noted as rsum is also reported. The rsum is used
to compare the overall performance.

4.2 Implementation Details
The MFGATN is implemented with the open resource framework
PyTorch. We adopt the Adam optimizer for all our experiments and
the margin of the inter-modal ranking loss is set to 0.3. We adopt
Bi-HNRL as the inter-modal ranking loss and the hyper-parameter
λ of the intra-modal structure loss is discussed detailly in section
4.4. Inspired by other baselines, we also freeze our pre-trained
models for video feature extraction. All aggregated video features
are projected to the same size as 768 before fed into the MFGAT
module (i.e., F=768). For MSR-VTT, we train the model with a batch
size of 64, a learning rate of 0.01, a weight decay of 5E-5. For MSVD,
we set the batch size to 16, learning rate to 0.001, weight decay to
5E-5. After every epoch, we evaluate the proposed model on the
validation set, and the final model is defined as the model with the
best recalls.

4.3 Performance Comparisons
With the same settings and data partition, we compare the proposed
MFGATN method with several state-of-the-art methods to demon-
strate the efficacy. Video-text retrieval approaches can be divided

into two categories according to the features for videos: single-
feature methods and multi-feature methods. For single-feature
methods, we compare with VSE [8], VSE++ [8], W2VV [6], dual
encoding [7], HGR [4], LJRV [37], and ST [14]. Besides, we also
compare it with several multi-feature methods, including JEMC
[25], Simple Concatenation, MoEE [23],and CE [20]. The simple
concatenation method connects multiple features to a single high-
dimensional embedding, followed by a GEM.

For single-feature methods, we directly report the results from
corresponding papers. For multi-feature aggregation methods, to
achieve a fair comparison, we make two efforts to improve the
results of the multi-feature methods: firstly, we utilize the same
video features; secondly, we adopt Bi-HNRL in training. Note that,
we also directly report the results of JEMC [25] since their method
is based on an ensemble of several models, and it is very difficult
to exactly re-implement the details. Table 1 and Table 2 show the
overall performance of MFGATN and all the baselines on MSR-VTT
and MSVD datasets, respectively. The experimental results reveal a
number of interesting points:

• The performance of multi-feature aggregation methods are
obviously better than that of single-feature methods, which
proves the significance of utilizing complementary cues from
videos to improve the video-text retrieval. For instance, the
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simple concatentation method achieves 3.2%, 2.7%, and 3.8%
relative improvements compared with the prior state-of-the-
art single-feature HGR method in R@1, R@5, and R@10 on
MSR-VTT dataset, respectively.

• The proposed MFGATN approach achieves 24.7%, 14.6%, and
11.3% relative improvements compared with the prior state-
of-the-art MoEE method in R@1, R@5, and R@10 on the
MSR-VTT dataset, respectively. The major reason is that
MoEE obtains the overall similarity by the weighted sum of
each expert’s similarity, but handling each modality inde-
pendently, which inevitably achieve unsatisfactory results.

• The proposed MFGATN approach achieves 21%, 14.2%, and
11.9% relative improvements compared with the prior state-
of-the-art CE method in R@1, R@5, and R@10 on the MSR-
VTT dataset, respectively. Similarly,MFGATN achieves 17.6%,
16.7%, and 10.7% relative improvements compared with the
CE method in R@1, R@5, and R@10 on the MSVD dataset,
respectively. This is due to that the CE method only strength-
ens (or weakens) some dimensions of the input signal. There-
fore, it is not able to capture high-level inter-modality infor-
mation among multiple features present in videos.

In a nutshell, the multi-feature aggregation methods outperform
the previous state-of-the-art single-feature methods, which demon-
strates that multiple features can help to boost the performance
of complicated video retrieval. Furthermore, MFGATN shows sig-
nificant superiority over other multi-feature aggregation methods,
indicating the benefit of high-level semantics information inter-
change among multiple features.

4.4 Componential Analysis
In this subsection, we present an ablation study to explore how
the performance of the proposed method is affected by different
components, including the multi-feature graph attention module
and different loss functions in training.

Effectiveness of the multi-feature graph attention mod-
ule: In order to further explore the effectiveness of the proposed
multi-feature graph attention module, we devise an ablation study
onMFGATN (w/o. MFGAT). To be specific, MFGATN (w/o. MFGAT)
is the variant of MFGATNmethod which removes the MFGAT mod-
ule from the full MFGATN. We see that our propose MFGATN (full)
method achieves 27.4%, 17.5%, and 13.2% relative improvements
compared with MFGATN (w/o. MFGAT) method in R@1, R@5,
and R@10 on the MSR-VTT dataset, respectively (see Figure 4(a) ).
Similarly, MFGATN (full) method achieves 14.1%, 9.5%, and 6.9%
relative improvements compared with MFGATN (w/o. MFGAT)
method in R@1, R@5, and R@10 on the MSVD dataset, respectively
(see Figure 4 (b)). The proposed MFGATN (full) method achieves
significant improvements compared with MFGATN (w/o. MFGAT),
which indicates that the MFGAT module plays an essential role in
the video-text retrieval task.

Loss functions:We compare our proposed dual constraint rank-
ing loss with existing ranking loss function to verify the effec-
tiveness. For instance, (1) Bi-direction hard-negatives ranking loss
function (Bi-HNRL), which only considers the inter-modal ranking
constraint. (2)Dual Constraint Ranking Loss (DCRL), which simul-
taneously considers the inter-modal ranking constraint and the
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Figure 4: Performance Evaluation Results of Ablation
Model.
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Figure 5: Effect of the hyperparameter λ for the intra-modal
structure constraint.

intra-modal structure constraint. The results, presented in Table 3
and Table 4, demonstrate the contribution of simultaneously con-
sideration of inter-modal ranking constraint and the intra-modal
structure constraint. Specifically, our propose DCRL achieves 2.5%,
2.4%, and 2.3% relative improvements compared with Bi-HNRL in
R@1, R@5, and R@10 on the MSR-VTT dataset, respectively. Simi-
larly, DCRL achieves 2.7%, 3.8%, and 2.97% relative improvements
compared with Bi-HNRL in R@1, R@5, and R@10 on the MSVD
dataset, respectively.

Moreover, λ is a crucial hyper-parameter to balance the inter-
modal ranking constraint and the intra-modal structure constraint.
Therefore, we further explore the effect of this hyper-parameter
by varying it from 0.1 to 0.5. Figure 5 shows the impact of this
hyper-parameter on the MSR-VTT and MSVD datasets. From the
Figure. 5, we note that the MSR-VTTdataset achieves the best per-
formance while the λ is set to 0.1, and MSVD dataset achieves the
best performance while the λ is set to 0.3.

4.5 Qualitative Analyses
To qualitatively validate the effectiveness of the MFGATN method,
we visually present several results of the multi-feature aggregation
methods. Figure. 6 shows the result results of MFGATN, CE, and
MoEE on the MSR-VTT dataset, respectively. For each method,
we show frames from the top-5 ranked videos (the ground truth
video is indicated by a red box). Moreover, we also report the GT
rank metric, which is the ground-truth rank of the relevant video
returned by models. Higher ranks indicate better performance.
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Table 3: Results of MFGATN with the different loss functions on the MSR-VTT dataset.

Method Text-to-Video Retrieval Video-to-Text Retrieval rsumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
Bi-HNRL 11.8 32.1 44.2 14 20.7 49.5 63.2 6 221.5
DCRL (λ = 0.1) 12.1 32.9 45.2 13 21.4 51.2 64.8 5 227.6

Table 4: Results of MFGATN with the different loss functions on the MSVD dataset.

Method Text-to-Video Retrieval Video-to-Text Retrieval rsumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
Bi-HNRL 22.1 53.1 67.3 5 25.5 55.8 66.4 4 290.2
DCRL (λ = 0.3) 22.7 55.1 69.3 4 27.8 55.8 66.9 4 297.6

Text Query: There is a woman surfing on the powerful waves.

MFGATN
(GT rank:1)

MoEE
(GT rank:10)

CE
(GT rank:4)

Figure 6: Visualizations of the text-to-video retrieval results on the MSR-VTT dataset. We visualize the top-5 ranked videos
given the same query, and the ground truth video is indicated by a red box.

As illustrated in Figure 6, we adopt ‘There is woman surfing on
the powerful waves’ as the same query text for all the methods. In
the top line, the proposed MFGATN model successfully retrieves
the correct video given the query text and the GT rank is 1, which
visually demonstrates the suporiority of our method. In the mid-
dle line, CE also retrieves the correct video given the query text.
However, the GT rank is 4, indicating the lack of the interchange
of high-level semantic information among multiple features indeed
degrades the performance. In the bottom line, MoEE fails to retrieve
the correct video among the top-5 returned videos, which shows the
deficiency of its simple concatenation. In conclusion, our method
can retrieve more accurately than other multi-feature aggregation
methods.

What’s more, we can also observe that the top-ranked videos in
MFGATN are more reasonable. The mismatched videos retrieved by
MFGATN contain partial content with the query text (i.e., woman
or waves), and are similar to the matched video, while CE andMoEE
make quite different mismatched video rank higher. Providing rea-
sonable candidates is meaningful in the real retrieval scenario where
users are not very confident with their input queries. Our MFGATN
can achieve this with the intra-modal structure constraint.

5 CONCLUSION
In this paper, we have proposed a novel Multi-Feature Graph At-
tention Network for video-text retrieval. Specifically, we introduce
a multi-feature graph attention module to aggregate the multiple
features in videos, and design a Dual Constraint Ranking Loss to
consider both the inter-modal ranking constraint and the intra-
modal structure constraint. Experiments on the MSR-VTT and the
MSVD datasets have demonstrated the significant improvements
of our method. In future work, we will explore the performance of
MFGATN on other video understanding tasks such as clustering
and summarisation.
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