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ABSTRACT

Cross-modal video-text retrieval has been an emerging task
due to the rapid growth of user-generated videos on the Inter-
net. Most existing approaches focus on extracting visual fea-
ture for the video, while audio and caption on the screen con-
taining rich information are ignored. Recently, the aggrega-
tions of multi-modal features in videos boost the benchmark
of video-text retrieval. However, since these multi-modal fea-
tures are high-dimensional and heterogeneous, their intrinsi-
cally structural relations have not been attached with enough
importance and are often overlooked in previous methods. To
address this issue, we propose a novel Attentive and Rela-
tional Feature Aggregation Network (ARFAN). Specifically,
we introduce the self-attention mechanism to make videos
adaptively assign higher weights to the representative modal-
ities. Then, the graph convolutional layers are inserted to
capture the relations among the multi-modal features to com-
bine them. Our method achieves 15% and 12.9% relative im-
provements on R@1 when compared with the state-of-the-art
method on MSR-VTT and MSVD datasets, respectively.

Index Terms— cross-modal, video-text retrieval, multi-
modal aggregation

1. INTRODUCTION

With the rapid growth of user-generated videos, cross-modal
retrieval between video data and natural language descrip-
tions, known as video-text retrieval, has attracted much atten-
tion. The goal of video-text retrieval is to retrieve and rank the
matching videos in the database according to the text query
given by users. The current dominant paradigm for video-
text retrieval [1, 2, 3] tries to map the queries and the videos
into a joint embedding space, where the semantically-similar
texts and videos are much closer to each other and vice versa.

Most existing methods [2, 4, 5, 6] adopt the visual feature
to represent videos. However, other rich information in the
videos which is effective for video-text retrieval is ignored.
Given a query like ‘A man is giving a speech about climate
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Fig. 1. Illustration of the differences between non-relational
methods, pairwise-relational methods and the proposed
method. The proposed method considers the structural re-
lations among the multi-modal features and successfully re-
trieves the correct video given the complex query.

change’, satisfactory results are difficult to be retrieved with-
out the audio or the caption on the screen.

Recently, multi-modal feature aggregation methods
greatly boost the benchmark of video-text retrieval, which
make use of different features like object, motion, audio, and
caption on the screen. However, an interesting observation
is that the performance degrades rather than improves, when
more and more features are adopted [3]. We address this to the
very challenging issue of multi-modal feature aggregation.
How to fully exploit knowledge from these high-dimensional
features and combine the rich and heterogeneous information
in videos is still an open problem, which is also the primary
motivation of this paper.

Different from the traditional multi-modal tasks where a
common fusion space is learnt for all the samples, multi-
feature aggregation in video-text retrieval has its character-
istics. Firstly, features act differently to encode different
videos. For a meeting video, audios and captions are signifi-
cant. While, for a game video, objects and motions should be
emphasized. Secondly, features are structurally related and
work together to meet the query. As illustrated in Figure 1,
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given a complex query like ‘A little girl reacting to a video of
President Obama giving a speech’, the speech feature, the face
feature ‘Obama’, and the visual feature ‘girl’ synergistically
promote the target video. While, previous multi-modal fea-
ture aggregation methods either measure the similarity of the
query and each feature independently or merely consider the
pairwise relations, making the confused videos highly ranked.

In this paper, we propose a novel Attentive and Rela-
tional Feature Aggregation Network (ARFAN), which can
adaptively discover valuable features for different videos and
combine the multi-modal features considering their structural
relations. Firstly, we employ the self-attention mechanism to
learn different weights for the multi-modal features. Thus,
videos can assign higher weights to the representative fea-
tures. Then, to excavate and preserve the intrinsic relations
among these features, we further insert the graph convolu-
tional layers into the network, which can capture the global
relations among all the features. To show the effectiveness of
the proposed ARFAN, we conduct experiments on two bench-
mark datasets. The main contributions of this work can be
summarized as follows:

• We emphasize that the structural relations in the multi-
modal features of one video is important for video-text
retrieval and thus propose an Attentive and Relational
Feature Aggregation Network.

• We introduce the self-attention mechanism to make
videos adaptively assign higher weights to the represen-
tative modalities. Then, the graph convolutional layers
are inserted to excavate intrinsic relations among the
multi-modal features to combine them.

• Our method achieves 15% and 12.9% relative im-
provements on R@1 compared with the state-of-the-
art method on MSR-VTT and MSVD datasets, respec-
tively.

2. RELATED WORK

Cross-modal video-text retrieval can be divided into two cat-
egories: concept-based approches and embedding-based ap-
proaches. Concept-based approaches [7, 8, 9] extract relevant
concepts from queries and videos, and accordingly establish
associations between these two modalities. The majority of
the top-ranked solutions for TRECVID challenge depend on
concept-based approaches [8, 9]. However, it is usually in-
effective for complex long queries, since it is very difficult
to describe the rich sequential information within both videos
and queries using a few selected concepts.

Embedding-based approaches [2, 5, 10, 11] try to directly
encode videos and texts into a common space. Many of these
existing approaches [2, 5] only focus on the visual feature
and encode the video inspired by the image-text embedding
methods. However, such methods do not take advantage of

the rich and various additional information present in videos,
such as objects, actions, faces and their combination. Re-
cently, it is widely studied that how to effectively aggregate
the multi-modal features available in videos into a compact
video representation. Mithun et al. [10] propose the JEMC
framework using action, object and audio features by a sim-
ple concatenation fusion strategy. Miech et al. [11] propose a
new model for learning a joint text-video embedding called
Mixture-of-Embedding-Experts (MoEE) that simply adopts
more features than JEMC method. Liu et al. [3] further adopt
all video features extracted from all modalities and utilize the
pairwise relations between two modalities to encode a video.
However, we argue that the ignorations of both different im-
pacts of video features and the intrinsic relations among them
inevitably degrade the retrieval performance.

3. METHODOLOGY

Given a video V and a query text T , we try to create a pair
of functions φ (V ) and ψ (T ) mapping videos and texts into
a joint embedding space, in which embeddings for matched
texts and videos should lie close together, while embeddings
for mismatched texts and videos should lie far apart. As
illustrated in Figure 2, our proposed framework consist of
three components: 1) the video embedding component ex-
tracts mulitiple features of videos and obtains fixed-length
video feature vectors by temporal aggregation module, and
then leverages Attentive and Relational Feature Aggregation
module to adaptively discover valuable features for differ-
ent videos and combine the multi-modal features consider-
ing their structural relations. 2) the text embedding compo-
nent encodes the query sentence into a single vector repre-
sentation, and then projects it to separated subspaces for each
video feature. 3) the similarity estimation component learns
the similarity between video and text.

3.1. Video Embedding

Feature Extraction. In order to make full use of the infor-
mation in one video, we draw on a collection of pre-trained
models to extract different video features. These operations
on the video project the video to a collection of N video fea-
ture embeddings

{
I
(1)
var, ...., I

(N)
var

}
. I

(i)
var represents the ith

video feature (subscript var denotes a variable-length out-
put when applied to a sequence of frames). In this paper,
we set N=6, and extract features for object, motion, audio,
speech, OCR and face. We use the features publicly released
by [3]. Each element of this collection is then aggregated
along its temporal dimension, producing fixed-length video
feature embeddings per video

{
I(1), .., I(N)

}
. For temporal

aggregation function, we adopt a simple approach to aggre-
gate the features described above. For object, motion and face
embeddings, we average frame-level features along the tem-
poral dimension to produce a single feature vector per video.
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Fig. 2. The Framework of Attentive and Relational Feature Aggregation Network for cross-modal video-text retrieval.

For speech, audio and OCR features, we adopt the NetVLAD
mechanism proposed by [12], which has proven effective for
the retrieval [3]. Next, we apply linear projections to trans-
form these time-aggregated embeddings to a common dimen-
sionality. Thus, these projected video feature embeddings can
be written as:

H = {h1, h2, ..., hN} . (1)

Attentive and Relational Feature Aggregation Module.
After extracting the multi-modal feature embeddings for each
video, there comes the problem that how to combine them
to represent the video content. Previous multi-modal fea-
ture aggregation methods either deal with each feature inde-
pendently or simply model the pairwise relations, which in-
evitably leads to an unsatisfactory performance.

To combine multiple features into the same dimension, a
straightforward way is to assign a weight to each feature, then
the weighted sum is the combined feature embedding. Here
we follow this paradigm. However, different from the tradi-
tional fusion methods where all the samples share the same
weights to combine their multiple features, the combination
weights for videos should be adaptive. Therefore, we adopt
two successive fully-connected layers as the attention weight-
ing function. Specifically, we apply a fully-connected layer
W1 ∈ RF×k with non-linear operation tanh (·) to H, pro-
ducing tanh (HW1). Then, we apply another fully-connected
layer W2 ∈ Rk×1 followed by a softmax layer to obtain the
N -dim weight vector a for H, that is:

a = softmax (tanh (HW1)W2) . (2)

However, existing attention methods only rely on H to
guide the weight vector learning, which ignores the structural
relations among multiple feature vectors in each video. To

take such relations into consideration, we insert graph convo-
lutional layers into the attention mechanism, which can ex-
cavate and preserve the relations among multiple feature em-
beddings in one video to make them more discriminative.

Graph convolutional layers are originally proposed for
semi-supervised learning and now we employ it for the weight
vector learning. Inspired by [13], we calculate the similarity
graph S for each video H = {h1, h2, ..., hN} during the
preprocessing, in which Sij is the cosine similarity between
hi and hj . Besides, we define S′ = S + IN and a diagonal
matrixD withDii =

∑
j S
′
ij . Then, the graph convolutional

layer can be represented by a 1×1 convolution layer with pa-
rameters S̄ = D−1/2S′D−1/2. Finally, we insert two graph
convolutional layers into Equation (2), and the ARFA can be
written as:

â = softmax
(
S̄tanh

(
S̄HW1

)
W2

)
. (3)

The generated â is expected to be more discriminative
than a, different videos focus on different video characteris-
tics, thus the video representation should been discriminative.
After the weight vector â has been computed, each feature
embedding is calculated with:

h′i = âihi + hi. (4)

By assigning different weights to different video features,
we can obtain discriminative video representations. The final
video embedding is then obtained by passing the modulated
representations of each video feature embeddings through a
Gated Embedding Module (GEM) (precise details in [11])
before concatenating the outputs together into a single fixed-
length vector.

The advantage of our ARFA over the state-of-the-art CE
[3] is obvious. CE only makes use of the collection of features
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extracted from multiple modalities and the pairwise relations
between each two features. The ignoration of the structural
and global relations among all these features leads to a de-
creased performance when compared with our method. Ex-
tensive comparisions are reported in the Section 4.

3.2. Text Embedding

Given a query sentence, denoted T , we first propogate each
words into the word2vec [14] model trained by Google News
to achieve their word embeddings. Then, all word embed-
dings are passed through a pre-trained OpenAI-GPT model
to extract the context-specific word embeddings. These word
embeddings are then aggregated into a single vector f(T ) rep-
resenting the entire sentence using a NetVLAD [12] aggrega-
tion module. Subsequently, this vector f(T ) is used to predict
the mixture weights (described in the next subsection). After
the aggregation, we project the aggregated feature f(T ) to
separated subspaces for each video feature using GEM (pre-
cise details in [11]). The text representation then consists of
N embeddings, represented by ψ (T ) =

{
ψi
}N
i=1

.

3.3. Similarity Estimation

We compute our final video-text similarity score s(T, V ) as
the weighted sum of each video-text similarity si(ψ

i, h′i),
which is calculated as:

s(T, V ) = ΣN
i=1wi(T )si(ψ

i, h′i), (5)

where wi(T ) represents the weight for the ith video fea-
ture embedding. To obtain these mixture weights, we adopt
the strategy in [11] to process the text representation f(T )
through a NetVLAD module and then perform a softmax op-
eration as:

wi(T ) =
ef(T )>bi

ΣN
j=1e

f(T )>bj
, (6)

where (b1, ..., bN ) are learnt parameters used to obtain the
mixture weights. The intuition behind using a weighted sum
is that a text provides a prior on which of the feature embed-
ding should be more important to compute the final similarity
score. Note that wi(T ) , ψi and h′i can all be precomputed
offiline for each text and each video, thus the retrieval only
involves dot product operations.

3.4. Training

To train the model, we adopt the bi-directional hard-negatives
ranking loss [2, 5]:

l =
1

B

B∑
i=1

∑
j 6=i

[max (0, m+ ŝi,j − si,i)

+ max (0, m+ ŝj,i − si,i)],

(7)

where B is the batch size, si,j = s(Ti, Vj) is the similarity
score of query sentence Ti and video Vj , and m is the margin
value for the pairwise ranking loss. ŝi,j and ŝj,i respectively
indicate a negative text sample for V and a negative video
sample for T .

4. EXPERIMENTS

4.1. Experimental Settings

Datasets We present experiments on two benchmark
datasets:MSR-VTT Dataset [18] and MSVD [19] to evalu-
ate the performance of our proposed framework. The MSR-
VTT contains 10,000 video clips. The dataset is split into
6,513 videos for training, 2,990 videos for testing and 497
videos for the validation set. Each video has 20-sentence de-
scriptions. The MSR-VTT is the most widely used dataset
for video-text retrieval. The MSVD dataset contains 1,970
Youtube clips, and each video is annotated with about 40 sen-
tences. For a fair comparison, we use the same splits utilized
in prior works [3], with 1,200 videos for training, 100 videos
for validation, and 670 videos for testing. All the sentences
associated with videos are used.

Evaluation Criteria We use the standard evaluation cri-
teria in most prior work on the video-text retrieval task. We
measure rank-based performance by R@K and Median Rank
(Med R). R@K is the percentage of test queries for which
at least one relevant item is found among the top-K retrieved
results. In this paper, we report results for R@1, R@5 and
R@10. Med R is the median rank of the first relevant item in
the search results. Results with higher R@K and lower Med
R are better performance. We also report the sum of R@1,
R@5 and R@10 as Sum of Recalls in the tables.

4.2. Implementation Details

We adopt the Adam optimizer for all our experiments, set
the margin of the bi-directional hard-negatives ranking loss to
0.3, and set k to 512. All aggregated video features are pro-
jected to the same size of 768 before fed into ARFA module
(i.e., F=768). For MSR-VTT, we train the model with batch
size of 64, learning rate of 0.01 and weight decay of 5E-5.
For MSVD, we set batch size to 16, learning rate to 0.001 and
weight decay to 5E-5. The model is evaluated on the valida-
tion set after every epoch, and of which the best sum of recalls
on the validation set is chosen as the final model.

4.3. Compared with state-of-the-art

With the same setting and data partition, we compare our
proposed ARFAN method with some existing state-of-the-art
methods to verify the effectiveness. Video-text retrieval ap-
proaches can be divided into two categories: single-feature
methods and multi-feature methods. For single-feature meth-
ods, we compare with VSE [15], VSE++ [15], W2VV [1],
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Table 1. Video-to-Text and Text-to-Video search results on the MSR-VTT dataset.

Method Text-to-Video Search Video-to-Text Search RSumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
Single-feature method
VSE [15] 5.0 16.4 24.6 47 7.7 20.3 31.2 28 105.2
VSE++ [15] 5.7 17.1 24.8 65 10.2 25.4 35.1 25 118.3
W2VV [1] 6.1 18.7 27.5 45 11.8 32.1 42.4 16 138.6
Dual Encoding [2] 7.7 22.0 31.8 32 13.0 30.8 43.3 15 148.6
CVTR [6] 7.8 23.2 33.5 28 13.1 29.6 41.8 17 149.0
HGR [5] 9.2 26.2 36.5 24 15.0 36.7 48.8 11 172.4
Multi-feature method
JEMC [10] 7.0 20.9 29.7 38 12.5 28.9 39.1 21 138.1
Simple Concatenation 9.4 26.9 37.9 20 15.1 38.0 51.0 10 178.3
MoEE [11] 9.7 28.7 40.6 17 14.8 40.9 54.8 8 189.5
CE [3] 10.0 28.8 40.4 16 16.5 43.5 56.8 7.5 196.0
ARFAN 11.5 31.3 42.8 15 19.9 49 62.4 6 216.9

Table 2. Video-to-Text and Text-to-Video search results on the MSVD dataset.

Method Text-to-Video Search Video-to-Text Search RSumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
Single-feature method
ST [16] 2.6 11.6 19.3 51 2.99 10.9 17.5 77 64.89
LJRV [17] 7.7 23.4 35.0 21 9.85 27.1 38.4 19 141.45
VSE [15] 12.3 30.1 42.3 14 15.8 30.2 41.4 12 172.1
VSE++ [15] 15.4 39.6 53.0 9 21.2 43.4 52.2 9 224.8
CVTR [6] 18.4 46.5 61.0 7 22.8 45.1 57.0 7 250.8
Multi-feature method
JEMC [10] 20.3 47.8 61.1 6 31.5 51.0 61.5 5 273.2
Simple Concatenation 18.2 45.1 60.4 7 20.6 48.2 59.0 6 251.5
MoEE [11] 19.1 46.9 62.4 6 23.1 51.9 62.8 5 266.2
CE [3] 19.3 47.2 62.6 6 23.4 50.4 61.5 5.5 264.4
ARFAN 21.8 51.6 66.3 5 24.5 53.4 64.9 4.5 282.5

dual encoding [2], HGR [5], CVTR [6], LJRV [17], and
ST [16]. Besides, we also compare with several multi-
feature methods, including JEMC [10], Simple Concate-
nation, MoEE [11],and CE [3]. The simple concatena-
tion method connects multi-modal features to a single high-
dimensional embedding, followed by a GEM. For a fair com-
parison, all the multi-feature aggregation methods utilize the
same video features. Moreover, we directly report the results
of single-feature methods from corresponding papers, while
re-implement multi-feature methods according to the authors’
instructions. Note that, we also directly report the results of
JEMC [10] since their method is based on an ensemble of sev-
eral models, and it is very difficult to exactly re-implement the
details.

Table 1 and Table 2 show the overall performance evalua-
tion results of ARFAN and all the baselines on MSR-VTT and
MSVD datasets, respectively. We can see that our proposed
method performs best and consistently outperforms state-of-
the-art methods in both text-to-video and video-to-text re-
trieval. The proposed ARFAN approach achieves 15%, 8.7%
and 6% relative improvements compared with the current best

method CE in R@1, R@5 and R@10 on MSR-VTT dataset,
respectively. Similarly, ARFAN achieves 12.9%, 9.3% and
5.9% relative improvements compared with CE method in
R@1, R@5 and R@10 on MSVD dataset respectively. In a
nutshell, ARFAN verifies the effectiveness of considering the
relations among the multi-modal features.

4.4. Ablation Study

In order to further explore the effectiveness of the proposed
ARFAN method, we conduct an ablation study as follows.

ARFAN (w/o. ARFA) is the variant of ARFAN method
which handles each feature independently. ARFAN (uni-
form weight) is the variant of ARFAN method which as-
signs uniform weights to features in each video instead of
learning weights using ARFA module, i.e., equivalently sets
h′i = 1

N hi +hi in equation (4). ARFAN (w/o. graph) is the
variant of ARFAN method which replaces the ARFA module
with the self-attention mechanism.

By taking the MSR-VTT dataset as an example, we show
the experimental results of ablation study in Table 3. By an-
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Table 3. Video-to-Text and Text-to-Video retrieval results of the ablation study on the MSR-VTT dataset.

Method Text-to-Video Search Video-to-Text Search RSumR@1 R@5 R@10 Med R R@1 R@5 R@10 Med R
ARFAN(w/o ARFA) 9.5 28.0 39.9 17 15.2 39.8 53.0 9 185.4
ARFAN(uniform weights) 10.6 29.3 41.0 17 18.2 44.6 56.8 7 200.5
ARFAN(w/o graph) 11.2 30.8 42.7 15 17.5 43.9 58.6 7 204.7
ARFAN 11.5 31.3 42.8 15 19.9 49.0 62.4 6 216.9

alyzing the results of ablation study, we can find the follow-
ing observations: The results of ARFAN (uniform weights)
are superiority over ARFAN (w/o. ARFA) method, indicat-
ing the benefit of considering the relation among multi-modal
features. The results of ARFAN (w/o. uniform weights) are
worse than ARFAN (w/o. graph), which proves the benefit
of making videos adaptively assign higher weights to the rep-
resentative modalities. Sums of recalls of ARFAN method
is increased from 204.7 to 216.9 compared to ARFAN(w/o.
graph), which shows the advantage of inserting graph convo-
lutional layers to capture intrinsic relations among the multi-
modal features. Moreover, the ARFAN (full) outperforms all
three variants on MSR-VTT dataset, which indicates that the
ARFA module plays an essential role and obtains a great per-
formance in the video-text retrieval task.

5. CONCLUSION

In this paper, we have proposed a novel attentive and rela-
tional feature aggregation network (ARFAN) to deal with the
high-dimensional and heterogeneous multi-modal features in
the videos to promote the video-text retrieval. The graph con-
volutional layers work together with the self-attention mecha-
nism to capture intrinsic relations among the multi-modal fea-
tures and make the combination adaptively. Experiments on
MSR-VTT and MSVD datasets have demonstrated that our
method achieves significant improvements compared to the
state-of-the-art researches.
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